21.8k views
11 votes
Using the digits 0-9, no more than once, complete the puzzle so that the sum of each side is equivalent.

Using the digits 0-9, no more than once, complete the puzzle so that the sum of each-example-1

1 Answer

3 votes

Answer:


\begin{matrix}8&2&7\\ 4&&1\\ 5&3&9\end{matrix}

Explanation:


\begin{matrix}a&e&b\\ f&&g\\ c&h&d\end{matrix}

From the table,we can extract these equations:

a + e + b = a + c + f = b + g + d = c + h + d

a + e + b = a + c + f ⇒ e + b = c + f

b + g + d = c + h + d ⇒ b + g = c + h


\begin{Bmatrix}e+b=c+f\\ b+g=c+h\end{Bmatrix} \Longrightarrow g-e=h-f\Longrightarrow g+f=h+e

2 + 3 = 4 + 1 then let’s consider :

e = 2 ; h = 3 ; f = 4 ; g = 1 ,which satisfies g + f = h + e

The table becomes:


\begin{matrix}a&2&b\\ 4&&1\\ c&3&d\end{matrix}

From the equation b + e = c + f we get b + 2 = c + 4 then b = c + 2

If we consider c = 5 ⇒ b = c + 2 = 5 + 2 = 7

Then the table becomes


\begin{matrix}a&2&7\\ 4&&1\\ 5&3&d\end{matrix}

Then a + 9 = d + 8 ⇒ d = a + 1

If we consider a = 8 ⇒ d = 9


\begin{matrix}8&2&7\\ 4&&1\\ 5&3&9\end{matrix}

I know it’s not perfect reasoning ,but it may help.

User Ottis
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.