Given:
Point P is on line segment OQ.
PQ=x+7,OP=4x-10,and OQ=4x.
To find:
The numerical length of OQ.
Solution:
Since, point P is on line segment OQ, so by segment addition property, we get
![OQ=OP+PQ](https://img.qammunity.org/2021/formulas/mathematics/college/mp0bccqzbks6hraz2rf6wixq4dukl3yl9y.png)
![4x=(4x-10)+(x+7)](https://img.qammunity.org/2021/formulas/mathematics/college/zvx55riccvgmgkopri4nwrlbi6jntu6zqo.png)
![4x=(4x+x)+(7-10)](https://img.qammunity.org/2021/formulas/mathematics/college/407lhw2nstthgzjmk89cb48jakbs3dg3j9.png)
![4x=5x-3](https://img.qammunity.org/2021/formulas/mathematics/college/y6nm421ld3wtn5946adgs0f0foxedduviy.png)
![4x-5x=-3](https://img.qammunity.org/2021/formulas/mathematics/college/97h5a2kwx24m3ky0oerc71ky4yuzuds8db.png)
![-x=-3](https://img.qammunity.org/2021/formulas/mathematics/high-school/x6w1zmlkf0vmwro8vj4hjarwat2q8tcf73.png)
![x=3](https://img.qammunity.org/2021/formulas/mathematics/college/yzekanmiuar9edsve93wg5dpqbw3650n5b.png)
The value of x is 3.
Now,
![OQ=4x](https://img.qammunity.org/2021/formulas/mathematics/college/8xcy5kg3comy5dg8946jttr6ymxqd037h6.png)
Putting x=3, we get
![OQ=4(3)](https://img.qammunity.org/2021/formulas/mathematics/college/6ujlag61k98zz7s715otq6xfegxk1xflyx.png)
![OQ=12](https://img.qammunity.org/2021/formulas/mathematics/college/mycncurtx2p5a4le79eyre7n6o3s7ikuld.png)
Therefore, the numerical length of OQ is 12 units.