107k views
8 votes
Consider the differential equation (x - 1)y" + y' = 0. By using power series so- lution about the ordinary point 0 we obtain: c_{k+1)=[(k+1)/(k+2)] C_(K); k=1,2,3.... c_(K+2)=[(k+1)/(k+2)] C_(K+1); k=0,1,2,3... None of them c_(k+2)=[(k+1)/(k+2)] C_(k+1); k=1,2,3....​

User Diane M
by
8.5k points

1 Answer

8 votes

Given the ODE

(x - 1) y'' + y' = 0

we assume a solution of the form


y(x) = \displaystyle \sum_(n=0)^\infty c_n x^n

with derivatives


y'(x) = \displaystyle \sum_(n=0)^\infty n c_n x^(n-1) = \sum_(n=0)^\infty (n+1) c_(n+1) x^n


y''(x) = \displaystyle \sum_(n=0)^\infty (n+1) n c_(n+1) x^(n-1) = \sum_(n=0)^\infty (n+2)(n+1) c_(n+2) x^n

Substituting these series into ODE gives


\displaystyle (x - 1) \sum_(n=0)^\infty (n+2)(n+1) c_(n+2) x^n + \sum_(n=0)^\infty (n+1) c_(n+1) x^n = 0


\displaystyle \sum_(n=0)^\infty (n+2)(n+1) c_(n+2) x^(n+1) - \sum_(n=0)^\infty (n+2)(n+1) c_(n+2) x^n + \sum_(n=0)^\infty (n+1) c_(n+1) x^n = 0


\displaystyle \sum_(n=1)^\infty (n+1)n c_(n+1) x^n - \sum_(n=0)^\infty (n+2)(n+1) c_(n+2) x^n + \sum_(n=0)^\infty (n+1) c_(n+1) x^n = 0


\displaystyle \sum_(n=1)^\infty \bigg((n+1)n c_(n+1) - (n+2)(n+1) c_(n+2) + (n+1) c_(n+1)\bigg) x^n - 2c_2 + c_1 = 0


\displaystyle \sum_(n=1)^\infty \bigg((n+1)^2 c_(n+1) - (n+2)(n+1) c_(n+2)\bigg) x^n - 2c_2 + c_1 = 0


\displaystyle \sum_(n=0)^\infty \bigg((n+1)^2 c_(n+1) - (n+2)(n+1) c_(n+2)\bigg) x^n = 0

Then the coefficients
c_n are given recursively by


(n+1)^2 c_(n+1) - (n+2)(n+1) c_(n+2) = 0

for all n ≥ 0, or equivalently,


c_(n+2) = (n+1)/(n+2) c_(n+1)

which most closely resembles the second choice.

User Jsinger
by
8.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories