32.9k views
0 votes
Please help me to prove this!​

Please help me to prove this!​-example-1

1 Answer

5 votes

Answer: see proof below

Explanation:

Given: A + B + C = π → A + B = π - C

→ B + C = π - A

→ C + A = π - B

→ C = π - (B + C)

Use Sum to Product Identity: cos A + cos B = 2 cos [(A + B)/2] · cos [(A - B)/2]

Use the Sum/Difference Identity: cos (A - B) = cos A · cos B + sin A · sin B

Use the Double Angle Identity: sin 2A = 2 sin A · cos A

Use the Cofunction Identity: cos (π/2 - A) = sin A

Proof LHS → Middle:


\text{LHS:}\qquad \qquad \cos \bigg((A)/(2)\bigg)+\cos \bigg((B)/(2)\bigg)+\cos \bigg((C)/(2)\bigg)


\text{Sum to Product:}\qquad 2\cos \bigg(((A)/(2)+(B)/(2))/(2)\bigg)\cdot \cos \bigg(((A)/(2)-(B)/(2))/(2)\bigg)+\cos \bigg((C)/(2)\bigg)\\\\\\.\qquad \qquad \qquad \qquad =2\cos \bigg((A+B)/(4)\bigg)\cdot \cos \bigg((A-B)/(4)\bigg)+\cos \bigg((C)/(2)\bigg)


\text{Given:}\qquad \quad =2\cos \bigg((A+B)/(4)\bigg)\cdot \cos \bigg((A-B)/(4)\bigg)+\cos \bigg((\pi -(A+B))/(2)\bigg)


\text{Sum/Difference:}\quad =2\cos \bigg((A+B)/(4)\bigg)\cdot \cos \bigg((A-B)/(4)\bigg)+\sin \bigg((A+B)/(2)\bigg)


\text{Double Angle:}\quad =2\cos \bigg((A+B)/(4)\bigg)\cdot \cos \bigg((A-B)/(4)\bigg)+\sin \bigg((2(A+B))/(2(2))\bigg)\\\\\\.\qquad \qquad \qquad =2\cos \bigg((A+B)/(4)\bigg)\cdot \cos \bigg((A-B)/(4)\bigg)+2\sin \bigg((A+B)/(4)\bigg)\cdot \cos \bigg((A+B)/(4)\bigg)


\text{Factor:}\quad =2\cos \bigg((A+B)/(4)\bigg)\bigg[ \cos \bigg((A-B)/(4)\bigg)+\sin \bigg((A+B)/(4)\bigg)\bigg]


\text{Cofunction:}\quad =2\cos \bigg((A+B)/(4)\bigg)\bigg[ \cos \bigg((A-B)/(4)\bigg)+\cos \bigg((\pi)/(2)-(A+B)/(4)\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =2\cos \bigg((A+B)/(4)\bigg)\cdot \cos \bigg((A-B)/(4)\bigg)+\cos \bigg((2\pi-(A+B))/(4)\bigg)\bigg]


\text{Sum to Product:}\ 2\cos \bigg((A+B)/(4)\bigg)\bigg[2 \cos \bigg((2\pi-2B)/(2\cdot 4)\bigg)\cdot \cos \bigg((2A-2\pi)/(2\cdot 4)\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =4\cos \bigg((A+B)/(4)\bigg)\cdot \cos \bigg((\pi-B)/(4)\bigg)\cdot \cos \bigg((\pi -A)/(4)\bigg)


\text{Given:}\qquad \qquad 4\cos \bigg((\pi -C)/(4)\bigg)\cdot \cos \bigg((\pi-B)/(4)\bigg)\cdot \cos \bigg((\pi -A)/(4)\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg((\pi -A)/(4)\bigg)\cdot \cos \bigg((\pi-B)/(4)\bigg)\cdot \cos \bigg((\pi -C)/(4)\bigg)

LHS = Middle
\checkmark

Proof Middle → RHS:


\text{Middle:}\qquad 4\cos \bigg((\pi -A)/(4)\bigg)\cdot \cos \bigg((\pi-B)/(4)\bigg)\cdot \cos \bigg((\pi -C)/(4)\bigg)\\\\\\\text{Given:}\qquad \qquad 4\cos \bigg((B+C)/(4)\bigg)\cdot \cos \bigg((C+A)/(4)\bigg)\cdot \cos \bigg((A+B)/(4)\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg((A+B)/(4)\bigg)\cdot \cos \bigg((B+C)/(4)\bigg)\cdot \cos \bigg((C+A)/(4)\bigg)

Middle = RHS
\checkmark

Please help me to prove this!​-example-1
Please help me to prove this!​-example-2
Please help me to prove this!​-example-3
User Raju Sharma
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories