8.1k views
3 votes
5^(-x)+7=2x+4 This was on plato

User Bugs Bunny
by
8.1k points

1 Answer

6 votes

Answer:

Below

I hope its not too complicated


x=\frac{\text{W}_0\left(\frac{\ln \left(5\right)}{2e^{(3\ln \left(5\right))/(2)}}\right)}{\ln \left(5\right)}+(3)/(2)

Explanation:


5^(\left(-x\right))+7=2x+4\\\\\mathrm{Prepare}\:5^(\left(-x\right))+7=2x+4\:\mathrm{for\:Lambert\:form}:\quad 1=\left(2x-3\right)e^(\ln \left(5\right)x)\\\\\mathrm{Rewrite\:the\:equation\:with\:}\\\left(x-(3)/(2)\right)\ln \left(5\right)=u\mathrm{\:and\:}x=(u)/(\ln \left(5\right))+(3)/(2)\\\\1=\left(2\left((u)/(\ln \left(5\right))+(3)/(2)\right)-3\right)e^{\ln \left(5\right)\left((u)/(\ln \left(5\right))+(3)/(2)\right)}


Simplify\\\\\mathrm{Rewrite}\:1=\frac{2e^{u+(3)/(2)\ln \left(5\right)}u}{\ln \left(5\right)}\:\\\\\mathrm{in\:Lambert\:form}:\quad \frac{e^{(2u+3\ln \left(5\right))/(2)}u}{e^{(3\ln \left(5\right))/(2)}}=\frac{\ln \left(5\right)}{2e^{(3\ln \left(5\right))/(2)}}


\mathrm{Solve\:}\:\frac{e^{(2u+3\ln \left(5\right))/(2)}u}{e^{(3\ln \left(5\right))/(2)}}=\frac{\ln \left(5\right)}{2e^{(3\ln \left(5\right))/(2)}}:\quad u=\text{W}_0\left(\frac{\ln \left(5\right)}{2e^{(3\ln \left(5\right))/(2)}}\right)\\\\\mathrm{Substitute\:back}\:u=\left(x-(3)/(2)\right)\ln \left(5\right),\:\mathrm{solve\:for}\:x


\mathrm{Solve\:}\:\left(x-(3)/(2)\right)\ln \left(5\right)=\text{W}_0\left(\frac{\ln \left(5\right)}{2e^{(3\ln \left(5\right))/(2)}}\right):\\\quad x=\frac{\text{W}_0\left(\frac{\ln \left(5\right)}{2e^{(3\ln \left(5\right))/(2)}}\right)}{\ln \left(5\right)}+(3)/(2)

User Slicedlime
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories