The projectile is fired with speed
at an angle
relative to the horizontal, so that the horizontal components of the initial velocity vector are
![v_x=v\cos\theta](https://img.qammunity.org/2021/formulas/physics/college/ptu27cnbgrvlsebcy7mxhk2022qlcbu0ph.png)
![v_y=v\sin\theta](https://img.qammunity.org/2021/formulas/physics/college/g3dcbeuu4ay3y3xnkcxgbktc4r56n0mrtq.png)
Its position vector has components
![x=v\cos\theta\,t](https://img.qammunity.org/2021/formulas/physics/college/iz8uliizviv387ku6goh28mj6oh23rou17.png)
![y=v\sin\theta\,t-\frac g2t^2](https://img.qammunity.org/2021/formulas/physics/college/odmb478v2vv3hwv8htu43r5c1y4in2gol0.png)
where
![g=9.80(\rm m)/(\mathrm s^2)](https://img.qammunity.org/2021/formulas/physics/college/9cmhax3n3jyh84nlskydatyasdu897xyjh.png)
Recall that
![{v_f}^2-{v_i}^2=2a\Delta x](https://img.qammunity.org/2021/formulas/physics/high-school/ydip7604435d3ijzmwnfe2mnltojtqiiqz.png)
where
and
are the projectile's initial and final velocities,
is its acceleration, and
is its displacement.
In the vertical direction, velocity is 0 at maximum height and
, so that
![-\left(v\sin\theta\right)^2=-2gy_(\rm max)\implies y_(\rm max)=(v^2\sin^2\theta)/(2g)](https://img.qammunity.org/2021/formulas/physics/college/h7pd8gr4r4r6zf28lgavzyjmtau1mgzgb5.png)
The projectile hits the ground when
, which happens for
![0=v\sin\theta\,t-\frac g2t^2\implies t=\frac{2v\sin\theta}g](https://img.qammunity.org/2021/formulas/physics/college/6q9zdfccc1ejxe1o8gvjvaf196ijq7brp5.png)
where we omit
because we know the projectile starts on the ground. This means the maximum horizontal range is
![x_(\rm max)=v\cos\theta\left(\frac{2v\sin\theta}g\right)=\frac{2v^2\sin\theta\cos\theta}g](https://img.qammunity.org/2021/formulas/physics/college/ci6n9hn9ln564ec1l3zmgyudcpfjqh313o.png)
We're given that
, so
![\frac{2v^2\sin\theta\cos\theta}g=(7v^2\sin^2\theta)/(2g)](https://img.qammunity.org/2021/formulas/physics/college/lqe87c7bnubu3de8b45rt5mf5gj2hfn2nv.png)
Solve for
:
![4\sin\theta\cos\theta=7\sin^2\theta](https://img.qammunity.org/2021/formulas/physics/college/lv3f55g5r0sh62tm57cf6mv2hg9rello15.png)
![\sin\theta(7\sin\theta-4\cos\theta)=0](https://img.qammunity.org/2021/formulas/physics/college/wrkrscjnj0ctgk1qphzn3cq0fl1gvwxsvy.png)
![\implies\sin\theta=0\text{ OR }7\sin\theta-4\cos\theta=0](https://img.qammunity.org/2021/formulas/physics/college/1tk8azkcgih9gq8wfyk7sc1ypvkc36olqd.png)
The first case suggests that
, but then both the maximum height and range would be 0, which would technically satisfy the given condition, but it's not an interesting solution.
In the second case, we get
![7\sin\theta-4\cos\theta=0](https://img.qammunity.org/2021/formulas/physics/college/j4cx3i44817dqi9ucx7ieztl8v8q4m57ma.png)
![7\sin\theta=4\cos\theta](https://img.qammunity.org/2021/formulas/physics/college/21bd8ogn7vomebxgmtgki37pwmizi0qczn.png)
![\tan\theta=\frac47](https://img.qammunity.org/2021/formulas/physics/college/z9rw3gdn8qunea7qmhz1830sr72v6okzeg.png)
![\theta=\arctan\left(\frac47\right)\approx29.7^\circ](https://img.qammunity.org/2021/formulas/physics/college/v6u302kkn8vna7s862k6j1duc78so7k8vn.png)
So the projectile was launched at an angle of about 29.7º.