Find the critical points of f(x, y) :
![(\partial f)/(\partial x)=2(x-1)-2(3-x-2y)=4x+4y-8=0](https://img.qammunity.org/2021/formulas/mathematics/college/3i3cjt4wbyeylk4xrvath1o04acwnjzq8o.png)
![(\partial f)/(\partial y)=2(y-4)-4(3-x-2y)=4x+10y-20=0](https://img.qammunity.org/2021/formulas/mathematics/college/j730nv5aruhpij6eyb4pt2go0ie8lyvjpz.png)
Subtract the first equation from the second to eliminate x and solve for y :
![(4x+10y-20)-(4x+4y-8)=0\implies 6y=12\implies y=2](https://img.qammunity.org/2021/formulas/mathematics/college/ibl04u2ep61c243p6508pd2qaxcm8ton9u.png)
Solve for x :
![4x+4\cdot2-8=0\implies 4x=0\implies x=0](https://img.qammunity.org/2021/formulas/mathematics/college/aedpgjcp7pu8p17vgpc9zn8mu7jknl3u65.png)
So f(x, y) has one critical point at (0, 2).
Compute the Hessian determinant of f(x, y) at this point:
![\mathbf H(x,y)=\begin{bmatrix}(\partial^2f)/(\partial x^2)&(\partial^2f)/(\partial x\partial y)\\(\partial^2f)/(\partial y\partial x)&(\partial^2f)/(\partial y^2)\end{bmatrix}=\begin{bmatrix}4&4\\4&10\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/zn73o1xp4ornb8l9grj5j50p7iegalwc6t.png)
The Hessian has determinant 24 > 0, which indicates a minimum, so the minimum value of f(x, y) is f(0, 2) = 6.