58.6k views
2 votes
F(x)=x2-10 and g(x)=11-x find (f-g)(x)(f-g)(10) and (f/g)(x) if they exist

Select the correct choice below​ and, if​ necessary, fill in the answer box to complete your choice.

A.

​(f​g)(x) ​=

nothing ​(Simplify your ​answer.)

B.

​(f​g)(x) does not exist.

Select the correct choice below​ and, if​ necessary, fill in the answer box to complete your choice.

A.

​(f​g)(​)

nothing ​(Simplify your​ answer.)

B.

The value for ​(f​g)(​) does not exist.

Select the correct choice below​ and, if​ necessary, fill in the answer box to complete your choice.

A.

​(x) ​=

nothing ​(Simplify your ​answer.)

B.

​(x) does not exist.

Click to select and enter your answer(s) and then click Check Answer.

1 Answer

3 votes

Answer:


(f - g)(x) = x^2 + x-21


(f - g)(10) = 89


(f/g)(x) = (x^2 - 10)/(11 - x)

Explanation:

Given


f(x) = x^2 - 10


g(x) = 11 - x

Solving (1): (f-g)(x)


(f - g)(x) = f(x) - g(x)

Substitute values for f(x) and g(x)


(f - g)(x) = x^2 - 10 - (11 - x)

Open Bracket


(f - g)(x) = x^2 - 10 - 11 + x


(f - g)(x) = x^2 -21 + x

Reorder


(f - g)(x) = x^2 + x-21

Solving (2): (f-g)(10)

In (1)


(f - g)(x) = x^2 + x-21

So:


(f - g)(10) = 10^2 + 10-21


(f - g)(10) = 100 + 10-21


(f - g)(10) = 89

Solving (3): (f/g)(x)


(f/g)(x) = (f(x))/(g(x))

Substitute values for f(x) and g(x)


(f/g)(x) = (x^2 - 10)/(11 - x)

User Mark Herscher
by
5.3k points