68.9k views
2 votes
What is the equation of a sine function with an amplitude of 2 and a period of 4

What is the equation of a sine function with an amplitude of 2 and a period of 4-example-1

1 Answer

0 votes

Answer: C

Explanation:

For this problem, we need to know the standard form of a sine function and the meaning of each part.

Standard form:
y=asin[b(x-h)]+k

a=amplitude

b=period

h=phase shift

k=vertical replacement/shifting

Now that we know the standard form and the components, we know that we can forget about k and plug in 0 for h. This would leave us with
y=asin[b(x)]. We know that the amplitude is 2, therefore, a=2. To find the period, you divide 2π by the given period.
(2\pi )/(b) =(2\pi )/(4\pi ) =(2)/(4) =(1)/(2), therefore, b=1/2.


y=asin[b(x)] [plug in a=2]


y=2sin[b(x)] [plug in b=1/2]


y=2sin((1)/(2)x)

Therefore, C is the correct answer.

User Stuart Herring
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories