93.6k views
0 votes
Please help me to prove this!​

Please help me to prove this!​-example-1
User Tallek
by
9.1k points

1 Answer

2 votes

Answer: see proof below

Explanation:

Given: A + B + C = π → A = π - (B + C)

→ B + C = π - A

Use the Pythagorean Identity: cos² A + sin² A = 1 → sin² A = 1 - cos² A

Use Double Angle Identities: cos 2A = 2 cos² A - 1 → cos² A = (cos 2A + 1)/2

→ cos A = 1 - 2 sin² (A/2)

Use Sum to Product Identity: cos A + cos B = 2 cos [(A + B)/2] · cos [(A - B)/2]

Use Cofunction Identities: cos (π/2 - A) = sin (A)

sin (π/2 - A) = cos A

cos (-A) = cos (A)

Proof LHS → RHS:


\text{LHS:}\qquad \qquad \sin^2\bigg((B)/(2)\bigg)+\sin^2 \bigg((C)/(2)\bigg)-\sin^2\bigg((A)/(2)\bigg)


\text{Pythagorean:}\qquad 1-\cos^2 \bigg((B)/(2)\bigg)+1-\cos^2 \bigg((C)/(2)\bigg)-\bigg[1-\cos^2 \bigg((A)/(2)\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =1-\cos^2 \bigg((B)/(2)\bigg)-\cos^2 \bigg((C)/(2)\bigg)+\cos^2 \bigg((A)/(2)\bigg)


\text{Double Angle:}\quad 1-\bigg((\cos(2\cdot (B)/(2))+1)/(2)\bigg)-\bigg((\cos (2\cdot (C)/(2))+1)/(2)\bigg)+\bigg((\cos (2\cdot (A)/(2))+1)/(2)\bigg)\\\\\\.\qquad \qquad \qquad =1-(\cos B)/(2)-(1)/(2)-(\cos C)/(2)-(1)/(2)+(\cos A)/(2)+(1)/(2)\\\\\\.\qquad \qquad \qquad =(1)/(2)[1-(\cos B+\cos C)+\cos A]


\text{Sum to Product:}\qquad (1)/(2)\bigg(1-\bigg[2\cos \bigg((B+C)/(2)\bigg)\cdot \cos \bigg((B-C)/(2)\bigg)\bigg]+\cos A\bigg)


\text{Given:}\qquad (1)/(2)\bigg(1-\bigg[2\cos \bigg((\pi -A)/(2)\bigg)\cdot \cos \bigg((B-C)/(2)\bigg)\bigg]+\cos A\bigg)


\text{Cofunction:}\qquad (1)/(2)\bigg(1-\bigg[2\sin \bigg((A)/(2)\bigg)\cdot \cos \bigg((B-C)/(2)\bigg)\bigg]+\cos A\bigg)


\text{Double Angle:}\qquad (1)/(2)\bigg[1-2\sin \bigg((A)/(2)\bigg)\cdot \cos \bigg((B-C)/(2)\bigg)+1-2\sin^2 \bigg((A)/(2)\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =(1)/(2)\bigg[2-2\sin \bigg((A)/(2)\bigg)\cdot \cos \bigg((B-C)/(2)\bigg)-2\sin^2 \bigg((A)/(2)\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =1-\sin \bigg((A)/(2)\bigg)\cdot \cos \bigg((B-C)/(2)\bigg)-\sin^2 \bigg((A)/(2)\bigg)


\text{Factor:}\qquad \qquad 1-\sin \bigg((A)/(2)\bigg)\bigg[ \cos \bigg((B-C)/(2)\bigg)-\sin \bigg((A)/(2)\bigg)\bigg]


\text{Given:}\qquad \qquad 1-\sin \bigg((A)/(2)\bigg)\bigg[ \cos \bigg((B-C)/(2)\bigg)-\sin \bigg((\pi -(B+C))/(2)\bigg)\bigg]


\text{Cofunction:}\qquad 1-\sin \bigg((A)/(2)\bigg)\bigg[ \cos \bigg((B-C)/(2)\bigg)+\cos \bigg((B+C)/(2)\bigg)\bigg]


\text{Sum to Product:}\ 1-\sin \bigg((A)/(2)\bigg)\cdot 2 \cos \bigg(((B-C)+(B-C))/(2\cdot 2)\bigg)\cdot \cos \bigg(((B-C)-(B+C))/(2\cdot 2)\bigg)\\\\\\.\qquad \qquad \qquad =1-2\sin \bigg((A)/(2)\bigg)\cdot \cos \bigg((B)/(2)\bigg)\cdot \cos \bigg(-(C)/(2)\bigg)
\text{Cofunction:}\qquad =1-2\sin \bigg((A)/(2)\bigg)\cdot \cos \bigg((B)/(2)\bigg)\cdot \cos \bigg((C)/(2)\bigg)


\text{LHS = RHS:}\quad \checkmark\\\\\quad 1-2\sin \bigg((A)/(2)\bigg)\cdot \cos \bigg((B)/(2)\bigg)\cdot \cos \bigg((C)/(2)\bigg)=1-2\sin \bigg((A)/(2)\bigg)\cdot \cos \bigg((B)/(2)\bigg)\cdot \cos \bigg((C)/(2)\bigg)\quad

Please help me to prove this!​-example-1
Please help me to prove this!​-example-2
Please help me to prove this!​-example-3
User Bkildow
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories