Answer:
The answer is below
Explanation:
Using binomial probability:
p = probability of a rural student getting admission = 1/2
q = probability of a rural student not getting admission = 1/2
n = number of students = 100
P(x) =

But

P(x > 50) = P(x = 51) + P(x = 52) + P(x = 53) + . . . + P(x = 100)
P(x > 50) =
![(1)/(2) ^(100)[C(100,51)+C(100,52)+C(100,53)+\ .\ .\ .+C(100,100)]\\](https://img.qammunity.org/2021/formulas/mathematics/college/u34p0u90of0feg0q1qmu9heanjad94w5cy.png)
![P(x>50)=(1)/(2)^(100) ((1)/(2)( 2^(100)-C(100,50)))\\\\P(x>50)=((1)/(2)^(100) *(1)/(2)*2^(100))- ((1)/(2)^(100) *(1)/(2)*C(100,50))\\\\P(x>50)=(1)/(2)[(2^(-100)*2^(100))-((1)/(2)^(100) *C(100,50))]\\ \\P(x>50)=(1)/(2)[1-(1)/(2)^(100) *C(100,50)]](https://img.qammunity.org/2021/formulas/mathematics/college/djrogv1shsparlwwidwqkw9fw6n3x850so.png)