211k views
4 votes
Plz solve this problem of trigonometry
i am an aakashian​

Plz solve this problem of trigonometry i am an aakashian​-example-1
User Shookit
by
8.9k points

1 Answer

6 votes

Explanation:


\bf L.H.S = \tt (sec\: \theta + tan \: \theta - 1)/(tan \: \theta - sec \: \theta + 1) \\ \\


: \implies \tt ((1)/(cos \: \theta) + (sin \: \theta)/(cos \: \theta) - 1)/( (sin \: \theta)/(cos \: \theta) - (1)/(cos \: \theta) + 1 ) \: = (1 + sin \: \theta - cos \: \theta)/(sin \: \theta + cos \: \theta) \\ \\


: \implies \tt( sin \: \theta - (cos \: \theta - 1))/(sin \: \theta + (cos \: \theta - 1)) \: * \: ( sin \: \theta - (cos \: \theta - 1))/(sin \: \theta - (cos \: \theta - 1)) \\ \\


: \implies \tt( sin^(2) \: \theta + cos^(2) \: \theta + 1 - 2 \: cos \: \theta - 2 \: sin \: \theta \: (cos \: \theta - 1))/(sin^(2) \: \theta - (cos \: \theta - 1)^(2) ) \\ \\


: \implies \tt(1 + 1 - 2 \: cos \: \theta - 2 \: sin \: \theta \: cos \: \theta + 2 \: sin \: \theta)/(sin^(2) \: \theta + cos^(2) \: \theta - 1 + 2 \: cos \: \theta ) \\ \\


: \implies \tt(2 - 2 \: cos \: \theta - 2 \: sin \: \theta \: cos \: \theta + 2 \: sin \: \theta)/(sin^(2) \: \theta + cos^(2) \: \theta - sin^(2) \: \theta - cos^(2) \: \theta + 2 \: cos \: \theta ) \\ \\


: \implies \tt(2 (1 - \: cos \: \theta )- 2 \: sin \: \theta (1 - \: cos \: \theta))/( 2 \: cos \: \theta - 2 \: cos^(2) \: \theta) \\ \\


: \implies \tt\frac{(2 + 2 \: sin \: \theta) \: \cancel{(1 - cos\: \theta)}}{2 \: cos \: \theta \: \cancel{(1 - cos \: \theta)}} \: = \: (1 + sin \: \theta)/(cos \: \theta) \\ \\


: \implies\tt(1 + sin \: \theta)/(cos \: \theta) \: * \: (1 - sin \: \theta)/(1 - sin \: \theta) \\ \\


: \implies\tt(1 + sin^(2) \: \theta)/(cos \: (1 - sin \: \theta)) \\ \\


: \implies\tt(cos^(2) \: \theta)/(cos \: \theta (1 - sin \: \theta)) \\ \\


: \implies\tt(cos \: \theta)/(1 - sin \: \theta) \: = \: \bf{ R.H.S}\\ \\


\huge\bigstar \:\underline{\red{\sf Hence, Proved}} \: \bigstar \\

User Andrey Yasinishyn
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories