39.2k views
0 votes
Integral of x+2/

\sqrt{x { + 2x + 3}^(2) }


User Luke Smith
by
8.1k points

1 Answer

1 vote

Looks like the integral should be


\displaystyle\int(x+2)/(√(x+(2x+3)^2))\,\mathrm dx

Expand the denominator:


\displaystyle\int(x+2)/(√(4x^2+13x+9))\,\mathrm dx

Notice that


u=4x^2+13x+9\implies \mathrm du=(8x+13)\,\mathrm dx

In order to use this substitution, expand the integral as


\displaystyle\frac18\int(8x+13)/(√(4x^2+13x+9))\,\mathrm dx+\frac38\int(\mathrm dx)/(√(4x^2+13x+9))

In the first integral, use the previously mentioned substitution:


\displaystyle\frac18\int(8x+13)/(√(4x^2+13x+9))\,\mathrm dx=\frac18\int(\mathrm du)/(\sqrt u)=\frac14\sqrt u


=\frac14√(4x^2+13x+9)

In the second integral, complete the square in the denominator:


4x^2+13x+9=4\left(x+\frac{13}8\right)^2-(25)/(16)

Now substitute


x=\frac58\sec t-\frac{13}8\implies\mathrm dx=\frac58\sec t\tan t\,\mathrm dt

so that


\sec t=\frac{8x+13}5

Then


4x^2+13x+9=(25)/(16)(\sec^2t-1)=(25)/(16)\tan^2t

and the integral becomes


\displaystyle((15)/(64))/(\frac54)\int(\sec t\tan t)/(√(\tan^2t))\,\mathrm dt=\frac3{16}\int\sec t\,\mathrm dt


=\frac3{16}\ln|\sec t+\tan t|


=\frac3{16}\ln\left|\frac{8x+13}5+\frac{√((8x+13)^2-25)}5\right|

So, the integral is


\frac14√(4x^2+13x+9)+\frac3{16}\ln\left|\frac{8x+13}5+\frac{√((8x+13)^2-25)}5\right|+C

User Mario Corchero
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories