39.2k views
0 votes
Integral of x+2/

\sqrt{x { + 2x + 3}^(2) }


User Luke Smith
by
4.1k points

1 Answer

1 vote

Looks like the integral should be


\displaystyle\int(x+2)/(√(x+(2x+3)^2))\,\mathrm dx

Expand the denominator:


\displaystyle\int(x+2)/(√(4x^2+13x+9))\,\mathrm dx

Notice that


u=4x^2+13x+9\implies \mathrm du=(8x+13)\,\mathrm dx

In order to use this substitution, expand the integral as


\displaystyle\frac18\int(8x+13)/(√(4x^2+13x+9))\,\mathrm dx+\frac38\int(\mathrm dx)/(√(4x^2+13x+9))

In the first integral, use the previously mentioned substitution:


\displaystyle\frac18\int(8x+13)/(√(4x^2+13x+9))\,\mathrm dx=\frac18\int(\mathrm du)/(\sqrt u)=\frac14\sqrt u


=\frac14√(4x^2+13x+9)

In the second integral, complete the square in the denominator:


4x^2+13x+9=4\left(x+\frac{13}8\right)^2-(25)/(16)

Now substitute


x=\frac58\sec t-\frac{13}8\implies\mathrm dx=\frac58\sec t\tan t\,\mathrm dt

so that


\sec t=\frac{8x+13}5

Then


4x^2+13x+9=(25)/(16)(\sec^2t-1)=(25)/(16)\tan^2t

and the integral becomes


\displaystyle((15)/(64))/(\frac54)\int(\sec t\tan t)/(√(\tan^2t))\,\mathrm dt=\frac3{16}\int\sec t\,\mathrm dt


=\frac3{16}\ln|\sec t+\tan t|


=\frac3{16}\ln\left|\frac{8x+13}5+\frac{√((8x+13)^2-25)}5\right|

So, the integral is


\frac14√(4x^2+13x+9)+\frac3{16}\ln\left|\frac{8x+13}5+\frac{√((8x+13)^2-25)}5\right|+C

User Mario Corchero
by
4.0k points