Answer: Option C.
Explanation:
Let as consider the below figure is attached below.
We know that angle between tangent and secant is half of difference of major and minor arcs.
![\angle ABC=(arc(AD)-arc(AC))/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/aigncwhcaedudbz4qmufd20cme8ahl9gba.png)
![3x+19=(17x-3-91)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/d9vs3c8wm0njkfcwmu4u3qsxz40q0zwrsc.png)
Multiply both sides by 2.
![6x+38=17x-94](https://img.qammunity.org/2021/formulas/mathematics/college/qiun99vdwmzailx2e9hp7kcty2zfwu4chz.png)
![38+94=17x-6x](https://img.qammunity.org/2021/formulas/mathematics/college/p2t930ggbkn0krpr98jihmjn3pua4tywq7.png)
![132=11x](https://img.qammunity.org/2021/formulas/mathematics/college/k43reyfqtgxzso99rhhhrvy0su5nbj7v5f.png)
Divide both sides by 11.
![12=x](https://img.qammunity.org/2021/formulas/mathematics/high-school/a7ggiuaka5obkcovpcbkup021lzxxf529j.png)
The value of x is 12.
![arc(AD)=17(12)-3](https://img.qammunity.org/2021/formulas/mathematics/college/6rlx6p97zlrziwf9i69irbp269gzlscxeq.png)
![arc(AD)=204-3](https://img.qammunity.org/2021/formulas/mathematics/college/te094ea05r6mcwpizns34om3vz7zoosq3m.png)
![arc(AD)=201^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/college/84gppih8tu79168zvk9q16tpxxmtminl20.png)
Now,
![arc(DCA)=360^\circ-arc(AD)](https://img.qammunity.org/2021/formulas/mathematics/college/wdnssfs7s2b2uiwwnf4ymyv6sqzumu4khz.png)
![arc(DCA)=360^\circ-201^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/college/u66gdk2vdchrf5e84ksl4mqmtqpdjpodea.png)
![m\widehat {DCA}=159^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/college/wgzgq5teirl6ysgtzitnyiubbszcgooioi.png)
Therefore, the correct option is C .