102k views
5 votes
If A, B,C are the angles of a triangle then prove: (the following in picture)

Please help me to prove this. ​

If A, B,C are the angles of a triangle then prove: (the following in picture) Please-example-1
User Jstell
by
8.1k points

2 Answers

6 votes

The proof for this is simple. Let's say that A + B + C = π. From here on we require several trigonometric identities that must be applied.


\cos \left(A\right)+\cos \left(B\right)+\cos \left(C\right) \\= 2 * cos((A + B) / 2) * cos((A - B) / 2) + \cos C \\= 2 * cos((\pi /2) - (C/2)) * cos((A - B) / 2) +\cos C \\= 2 * sin(C/2) * cos((A - B) / 2) + (1 - 2 * sin^2 (C/2)) \\= 1 + 2 sin (C/2) * cos((A - B) / 2) - sin (C/2) \\= 1 + 2 sin (C/2) * cos((A - B) / 2) - sin((\pi /2) - (A + B)/2 ))\\= 1 + 2 sin (C/2) * cos((A - B) / 2) - cos((A + B)/ 2)\\= 1 + 2 sin (C/2) * 2 sin (A/2) * sin(B/2) \\= 1 + 4 sin(A/2) sin(B/2) sin(C/2)

Hope that helps!

1 vote

Answer: see proof below

Explanation:

Given: A + B + C = π → A + B = π - C

→ C = π - (A + B)

Use Sum to Product Identity: cos A + cos B = 2 cos [(A + B)/2] · cos [(A - B)/2]

Use Product to Sum Identity: 2 sin A · sin B = cos [(A + B)/2] - cos [(A - B)/2]

Use the Double Angle Identity: cos 2A = 1 - 2 sin² A

Use the Cofunction Identity: cos (π/2 - A) = sin A

Proof LHS → RHS:

LHS: cos A + cos B + cos C

= (cos A + cos B) + cos C


\text{Sum to Product:}\qquad 2\cos \bigg((A+B)/(2)\bigg)\cdot \cos \bigg((A-B)/(2)\bigg)+\cos C


\text{Given:}\qquad 2\cos \bigg((\pi -C)/(2)\bigg)\cdot \cos \bigg((A-B)/(2)\bigg)+\cos C\\\\\\.\qquad \qquad =2\cos \bigg((\pi)/(2) -(C)/(2)\bigg)\cdot \cos \bigg((A-B)/(2)\bigg)+\cos C


\text{Cofunction:}\qquad 2\sin \bigg((C)/(2)\bigg)\cdot \cos \bigg((A-B)/(2)\bigg)+\cos C


\text{Double Angle:}\qquad 2\sin \bigg((C)/(2)\bigg)\cdot \cos \bigg((A-B)/(2)\bigg)+\cos\bigg(2\cdot (C)/(2)\bigg)\\\\\\.\qquad \qquad \qquad =2\sin \bigg((C)/(2)\bigg)\cdot \cos \bigg((A-B)/(2)\bigg)+1-2\sin^2 \bigg((C)/(2)\bigg)\\\\\\.\qquad \qquad \qquad =1+2\sin \bigg((C)/(2)\bigg)\cdot \cos \bigg((A-B)/(2)\bigg)-2\sin^2\bigg((C)/(2)\bigg)


\text{Factor:}\qquad 1+2\sin \bigg((C)/(2)\bigg)\bigg[\cos \bigg((A-B)/(2)\bigg)-\sin\bigg((C)/(2)\bigg)\bigg]


\text{Given:}\qquad 1+2\sin \bigg((C)/(2)\bigg)\bigg[\cos \bigg((A-B)/(2)\bigg)-\sin\bigg((\pi-(A+B))/(2)\bigg)\bigg]\\\\\\.\qquad \qquad 1+2\sin \bigg((C)/(2)\bigg)\bigg[\cos \bigg((A-B)/(2)\bigg)-\sin\bigg((\pi)/(2)-(A+B)/(2)\bigg)\bigg]


\text{Cofunction:}\qquad 1+2\sin \bigg((C)/(2)\bigg)\bigg[\cos \bigg((A-B)/(2)\bigg)-\cos\bigg((A+B)/(2)\bigg)\bigg]


\text{Product to Sum:}\qquad 1+2\sin \bigg((C)/(2)\bigg)\bigg[2\sin \bigg((A)/(2)\bigg)\cdot \sin\bigg((B)/(2)\bigg)\bigg]\\\\\\.\qquad \qquad \qquad \qquad =1+4\sin \bigg((C)/(2)\bigg)\bigg[\sin \bigg((A)/(2)\bigg)\cdot \sin\bigg((B)/(2)\bigg)\bigg]\\\\\\.\qquad \qquad \qquad \qquad =1+4\sin \bigg((A)/(2)\bigg)\sin \bigg((B)/(2)\bigg) \sin\bigg((C)/(2)\bigg)


\text{LHS = RHS:}\ 1+4\sin \bigg((A)/(2)\bigg)\sin \bigg((B)/(2)\bigg) \sin\bigg((C)/(2)\bigg)=1+4\sin \bigg((A)/(2)\bigg)\sin \bigg((B)/(2)\bigg) \sin\bigg((C)/(2)\bigg)\quad \checkmark

If A, B,C are the angles of a triangle then prove: (the following in picture) Please-example-1
If A, B,C are the angles of a triangle then prove: (the following in picture) Please-example-2
If A, B,C are the angles of a triangle then prove: (the following in picture) Please-example-3
User Riwen
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories