173k views
3 votes
y=c1e^x+c2e^−x is a two-parameter family of solutions of the second order differential equation y′′−y=0. Find a solution of the second order initial value problem with initial conditions y(−1)=3,y′(−1)=−3

User Shivam Roy
by
8.2k points

1 Answer

0 votes

The general form of a solution of the differential equation is already provided for us:


y(x) = c_1 \textrm{e}^x + c_2\textrm{e}^(-x),

where
c_1, c_2 \in \mathbb{R}. We now want to find a solution
y such that
y(-1)=3 and
y'(-1)=-3. Therefore, all we need to do is find the constants
c_1 and
c_2 that satisfy the initial conditions. For the first condition, we have:
y(-1)=3 \iff c_1 \textrm{e}^(-1) + c_2 \textrm{e}^(-(-1)) = 3 \iff c_1\textrm{e}^(-1) + c_2\textrm{e} = 3.

For the second condition, we need to find the derivative
y' first. In this case, we have:


y'(x) = \left(c_1\textrm{e}^x + c_2\textrm{e}^(-x)\right)' = c_1\textrm{e}^x - c_2\textrm{e}^(-x).

Therefore:


y'(-1) = -3 \iff c_1\textrm{e}^(-1) - c_2\textrm{e}^(-(-1)) = -3 \iff c_1\textrm{e}^(-1) - c_2\textrm{e} = -3.

This means that we must solve the following system of equations:


\begin{cases}c_1\textrm{e}^(-1) + c_2\textrm{e} = 3 \\ c_1\textrm{e}^(-1) - c_2\textrm{e} = -3\end{cases}.

If we add the equations above, we get:


\left(c_1\textrm{e}^(-1) + c_2\textrm{e}\right) + \left(c_1\textrm{e}^(-1) - c_2\textrm{e} \right) = 3-3 \iff 2c_1\textrm{e}^(-1) = 0 \iff c_1 = 0.

If we now substitute
c_1 = 0 into either of the equations in the system, we get:


c_2 \textrm{e} = 3 \iff c_2 = \frac{3}{\textrm{e}} = 3\textrm{e}^(-1.)

This means that the solution obeying the initial conditions is:


\boxed{y(x) = 3\textrm{e}^(-1) * \textrm{e}^(-x) = 3\textrm{e}^(-x-1)}.

Indeed, we can see that:


y(-1) = 3\textrm{e}^(-(-1) -1) = 3\textrm{e}^(1-1) = 3\textrm{e}^0 = 3


y'(x) =-3\textrm{e}^(-x-1) \implies y'(-1) = -3\textrm{e}^(-(-1)-1) = -3\textrm{e}^(1-1) = -3\textrm{e}^0 = -3,

which do correspond to the desired initial conditions.

User Pius Raeder
by
8.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories