Answer:
The quantity of heat necessary to change the temperature of 3.00 mol of the substance from 27°C to 227°C is 19.668 KJ
Step-by-step explanation:
From the question, The empirical equation is
C=29.5J/(mol⋅K)+(8.20×10−3J/(mol⋅K2))T
![C=29.5J/(mol.K)+(8.20* 10^(-3) J/(mol.K^(2) ))T](https://img.qammunity.org/2021/formulas/chemistry/college/kfaye5agfpyou1c6qmd3blvq5z35kif8e4.png)
Now, to determine the heat necessary to change the temperature of 3.00 mol of this substance from 27∘C to 227∘C, that is ΔQ
From, dQ=nCdT
Integrating both sides, we get
![\int\limits^ {Q_(2)} _{Q_(1)} {dQ} \, = \int\limits^ {T_(2) }_{T_(1) } nC \, dT](https://img.qammunity.org/2021/formulas/chemistry/college/h9f0s6g093tytms0zz5zccijnkabz7yaln.png)
![{Q_(2)} -{Q_(1)} = \int\limits^ {T_(2) }_{T_(1) } n[ {29.5J/(mol.K)+(8.20* 10^(-3) J/(mol.K^(2) ))T} \, ]dT](https://img.qammunity.org/2021/formulas/chemistry/college/mq52vasettz15ia2rpsr1oglxwof6hd67i.png)
![\Delta Q = \int\limits^ {T_(2) }_{T_(1) } 3.00mol[ {29.5J/(mol.K)+(8.20* 10^(-3) J/(mol.K^(2) ))T} \, ]dT](https://img.qammunity.org/2021/formulas/chemistry/college/5iupk00lbi360utb4f2c08zmrwc5gjf5ci.png)
![\Delta Q = \int\limits^ {T_(2) }_{T_(1) } [ {88.5J/K+ (24.6* 10^(-3) J/K^(2) )T} \, ]dT](https://img.qammunity.org/2021/formulas/chemistry/college/iuqm8j9feskvxyobvu7rk2gp7k7fvymkuk.png)
![\Delta Q = \int\limits^ {T_(2) }_{T_(1) } {88.5J/KdT + \int\limits^ {T_(2) }_{T_(1) } 24.6* 10^(-3) J/K^(2) T} dT](https://img.qammunity.org/2021/formulas/chemistry/college/rpe3a3a3rewliyp1lygz1zr8na6zerq5g6.png)
![\Delta Q =(88.5J/K )\int\limits^ {T_(2) }_{T_(1) } dT + (24.6* 10^(-3) J/K^(2))\int\limits^ {T_(2) }_{T_(1) } T} dT](https://img.qammunity.org/2021/formulas/chemistry/college/6szw0j1kou1im34s4dqxmcqezwnry0suhk.png)
(NOTE:
and
)
Hence, we get
![\Delta Q =(88.5J/K )({T_(2) }-{T_(1) )+ (24.6* 10^(-3) J/K^(2)) ((T_(2)^(2) )/(2) - (T_(1)^(2) )/(2) )](https://img.qammunity.org/2021/formulas/chemistry/college/bxov3vpksqwkt30qovgk23nsqqea0rr2vy.png)
From the question,
= 27 °C = (27+273) K = 300K
Also,
= 227 °C = (227+273) K = 500K
Then,
![\Delta Q =(88.5J/K )(500K - 300K )+ (24.6* 10^(-3) J/K^(2)) (((500K)^(2) )/(2) - ((300K)^(2) )/(2) )](https://img.qammunity.org/2021/formulas/chemistry/college/2i4tg69qogapynn18b56hjbuqwx2dhfmhl.png)
![\Delta Q =(88.5J/K )(200K )+ (24.6* 10^(-3) J/K^(2)) (80* 10^(3) K^(2) )](https://img.qammunity.org/2021/formulas/chemistry/college/jdwjfg5wlot47mq0fayfhcvu4qbupdwj29.png)
![\Delta Q =17700J +1968J \\](https://img.qammunity.org/2021/formulas/chemistry/college/a06uwmk9ii4wl07yk6ytr1q5gsxowgaj5z.png)
![\Delta Q =19668J](https://img.qammunity.org/2021/formulas/chemistry/college/lk9424aqgkzrpcrkzt2tznv5utuprxdajl.png)
![\Delta Q =19.668KJ](https://img.qammunity.org/2021/formulas/chemistry/college/ma4xjz01ye23nf07odarqz7wzrlkpm44yx.png)
Hence, the quantity of heat necessary to change the temperature of 3.00 mol of the substance from 27°C to 227°C is 19.668 KJ
(NOTE: KJ means Kilo Joules)