133k views
19 votes
3

3
Select the correct answer.
What is the value of 9(2),
Se) -
I < 2
g(1) =
13 - 9x^2+ 27x– 25, I > 2
OA
-1
OB. 1
O C. 1
OD. 2
Reset
Next

3 3 Select the correct answer. What is the value of 9(2), Se) - I < 2 g(1) = 13 - 9x-example-1
User Haaris
by
3.8k points

2 Answers

8 votes

Answer:

C. 1

Explanation:


  • g(x)=\begin{cases} \bigg((1)/(2)\bigg)^(x-3), {x<2} \\\\ x^3-9x^2+27x -25, {x \geq 2}\end{cases}

  • g(2) lies in the interval
    x\geq 2


  • \implies g(2) = (2)^3-9(2)^2+27(2) -25


  • \implies g(2) =8-36+54 -25


  • \implies g(2) =1
User Mashhadi
by
3.0k points
6 votes

Answer:

C

Explanation:

x = 2 in the interval x ≥ 2 , then g(x) = x³ - 9x² + 27x - 25 , so

g(2) = 2³ - 9(2)² + 27(2) - 25

= 8 - 9(4) + 54 - 25

= 8 - 36 + 29

= - 28 + 29

= 1

User Benny Davidovitz
by
3.0k points