Answer:
![f(x) = 2x^2 - x - 1](https://img.qammunity.org/2021/formulas/mathematics/college/l8r7x5bpndjey9mq8iwcqbucdxp85kbylr.png)
![g(x) = 2x + 1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/809f65pikha8ot200atavdelldcv14ehjq.png)
Explanation:
Let the two polynomials be represented with f(x) and g(x);
Since, we have to generate the polynomial ourselves;
I'll make use of the following:
![f(x) = 2x^2 - x - 1](https://img.qammunity.org/2021/formulas/mathematics/college/l8r7x5bpndjey9mq8iwcqbucdxp85kbylr.png)
![g(x) = 2x + 1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/809f65pikha8ot200atavdelldcv14ehjq.png)
Note that; when the result of polynomial division is referred to as quotient;
To get the quotient, we simply divide f(x) by g(x)
![(f(x))/(g(x)) = (2x^2 - x - 1)/(2x + 1)](https://img.qammunity.org/2021/formulas/mathematics/college/prdha4d1f42d206yzrnxqrvl7l6ug0kcuy.png)
Expand the numerator
![(f(x))/(g(x)) = (2x^2 - 2x + x - 1)/(2x + 1)](https://img.qammunity.org/2021/formulas/mathematics/college/r21gva3uazi1c3oe1pddqr57q8lxv3ot8n.png)
![(f(x))/(g(x)) = (2x(x - 1) +1(x - 1))/(2x + 1)](https://img.qammunity.org/2021/formulas/mathematics/college/6pk0rcvr3q0gs4xbcydpa1ikpooc9qou9i.png)
Factorize:
![(f(x))/(g(x)) = ((2x + 1)(x - 1))/(2x + 1)](https://img.qammunity.org/2021/formulas/mathematics/college/afq4y6k2jx794x9xpcf09ojlk0kj6vgjjr.png)
Cross out 2x + 1
![(f(x))/(g(x)) = x - 1](https://img.qammunity.org/2021/formulas/mathematics/college/re9s533aok0ggsd9vzzl6i8sugktxpkq9j.png)
This implies that, the quotient, Q(x) is
![Q(x) = x - 1](https://img.qammunity.org/2021/formulas/mathematics/college/slapzb994jbanci5emysl4d4uglzbe4n8r.png)
Comparing the divisor g(x) and the quotient Q(x), we notice that they have the same degree of 1