181k views
3 votes
If sinx = p and cosx = 4, work out the following forms :




If sinx = p and cosx = 4, work out the following forms : ​-example-1

1 Answer

2 votes

Answer:


$\frac{p^2 - 16} {4p^2 + 16} $

Explanation:

I will work with radians.


$\frac {\cos^2 \left((\pi)/(2)-x \right)+\sin(-x)-\sin^2 \left((\pi)/(2)-x \right)+\cos \left((\pi)/(2)-x \right)} {[\sin(\pi -x)+\cos(-x)] \cdot [\sin(2\pi +x)\cos(2\pi-x)]}$

First, I will deal with the numerator


$\cos^2 \left((\pi)/(2)-x \right)+\sin(-x)-\sin^2 \left((\pi)/(2)-x \right)+\cos \left((\pi)/(2)-x \right)$

Consider the following trigonometric identities:


$\boxed{\cos\left((\pi)/(2)-x \right)=\sin(x)}$


$\boxed{\sin\left((\pi)/(2)-x \right)=\cos(x)}$


\boxed{\sin(-x)=-\sin(x)}


\boxed{\cos(-x)=\cos(x)}

Therefore, the numerator will be


$\sin^2(x)-\sin(x)-\cos^2(x)+\sin(x) \implies \sin^2(x)- \cos^2(x)$

Once


\sin(x)=p


\cos(x)=4


$\sin^2(x)-\cos^2(x) \implies p^2-4^2 \implies \boxed{p^2-16}$

Now let's deal with the numerator


[\sin(\pi -x)+\cos(-x)] \cdot [\sin(2\pi +x)\cos(2\pi-x)]

Using the sum and difference identities:


\boxed{\sin(a \pm b)=\sin(a) \cos(b) \pm \cos(a)\sin(b)}


\boxed{\cos(a \pm b)=\cos(a) \cos(b) \mp \sin(a)\sin(b)}


\sin(\pi -x) = \sin(x)


\sin(2\pi +x)=\sin(x)


\cos(2\pi-x)=\cos(x)

Therefore,


[\sin(\pi -x)+\cos(-x)] \cdot [\sin(2\pi +x)\cos(2\pi-x)] \implies [\sin(x)+\cos(x)] \cdot [\sin(x)\cos(x)]


\implies [p+4] \cdot [p \cdot 4]=4p^2+16p

The final expression will be


$\frac{p^2 - 16} {4p^2 + 16} $

User Mthecreator
by
5.2k points