Answer:
[-0.1393, -0.0207]
Explanation:
The formula for the confidence interval for the difference in the two population proportions =
(p1 - p2) ± z × √[p1 (1 - p1)/n1]+ [p2 (1 - p2)/n2]
From the question
p1= 0.43
p2 = 0.51
n1= 604
n2 = 490
z = z score for 95 % confidence interval = 1.96
Confidence Interval = (p1 - p2) ± z × √[p1 (1 - p1)/n1]+ [p2 (1 - p2)/n2]
= (0.43 - 0.51) ± 1.96 × √[0.43(1 - 0.43)/604]+ [0.51 (1 - 0.51)/490]
= -0.08 ± 1.96 × √[ 0.43 × 0.57/604] + [0.51 × 0.49/490]
= -0.08 ± 1.96 × √0.0004057947 + 0.00051
= -0.08 ± 1.96 × √0.0009157947
= - 0.08 ± 1.96 × 0.0302621001
= -0.08 ± 0.0593137161
Confidence Interval =
-0.08 - 0.00593137161 = - 0.1393137161
Approximately = -0.1393
-0.08 + 0.00593137161 = -0.0206862839
Approximately = -0.0207
The confidence Interval for the difference in the two population proportions is [-0.1393, -0.0207]