42.7k views
4 votes
what is the dot product and cross product of of two vectors if the angle is between them is 90 degree?​

User Dominictus
by
6.0k points

2 Answers

3 votes

the dot and cross product will become zero if the angle becomes 90°

hope it helps you...

#from india ✌✌✌

User Dsi
by
5.5k points
4 votes


\sf{\pink{\underline{\underline{\blue{GIVEN:-}}}}}

  • The angle between the two vectors is 90° .


\sf{\pink{\underline{\underline{\blue{TO\: FIND:-}}}}}

  1. The dot product of two vectors .
  2. The cross product of two vectors .


\sf{\pink{\underline{\underline{\blue{SOLUTION:-}}}}}

⚡ Let
\rm{\vec{a}} and
\rm{\vec{b}} are the two vectors .

✍️ We have know that,


\orange\bigstar\:\rm{\pink{\boxed{\green{\vec{a}\:.\:\vec{b}\:=\:abcos(\theta)\:}}}}

Where,

  • θ = 90°


\rm{\implies\:\vec{a}\:.\:\vec{b}\:=\:ab\cos{90^(\degree)}\:}

  • cos 90° = 0


\rm{\implies\:\vec{a}\:.\:\vec{b}\:=\:ab*{0}\:}


\rm{\implies\:\vec{a}\:.\:\vec{b}\:=\:0\:}


\rm{\red{\therefore}} [1] The dot product of two vectors is “ 0 ” .

✍️ We have know that,


\orange\bigstar\:\rm{\pink{\boxed{\green{\vec{a}\:*\:\vec{b}\:=\:absin(\theta)\:}}}}

Where,

  • θ = 90°


\rm{\implies\:\vec{a}\:*\:\vec{b}\:=\:ab\sin{90^(\degree)}\:}

  • sin 90° = 1


\rm{\implies\:\vec{a}\:*\:\vec{b}\:=\:ab*{1}\:}


\rm{\implies\:\vec{a}\:*\:\vec{b}\:=\:ab\:}


\rm{\red{\therefore}} [2] The cross product of two vectors is “ ab ” .

User Sujith Karivelil
by
6.2k points