Answer:
![x=(1)/(4)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/jh37x07sjz76xaa2lh4y3k3hf49zg9h2k3.png)
Explanation:
So we have the function:
![h(x)=-2x+(5)/(4)](https://img.qammunity.org/2021/formulas/mathematics/college/v9fsnpa13vfpube030qxc5yjyjt033cney.png)
And we want to find h(x)=3/4.
So, we want to find the value of x such that h(x) equates to 3/4.
So, substitute 3/4 for h(x):
![(3)/(4)=-2x+(5)/(4)](https://img.qammunity.org/2021/formulas/mathematics/college/4z17j1txryecahs3munkv24x8pg9d8dpwt.png)
First, subtract both sides by 5/4. The right will cancel.
![(3)/(4)-(5)/(4)=-2x+(5)/(4)-(5)/(4)](https://img.qammunity.org/2021/formulas/mathematics/college/x5ifejxxx054lzrp6h5glp4ll3xexqiyzs.png)
Subtract on the left:
![-(2)/(4)=-2x](https://img.qammunity.org/2021/formulas/mathematics/college/symtkh58bnz7gyldpngked6qksdmc7kgc9.png)
Reduce on the left:
![-(1)/(2)=-2x](https://img.qammunity.org/2021/formulas/mathematics/college/2kd76z30o7pbqv2kd388c4qfccfj8lgv5j.png)
Now, multiply both sides by -1/2. The right will again cancel:
![-(1)/(2)(-(1)/(2))=-(1)/(2)(-2x)](https://img.qammunity.org/2021/formulas/mathematics/college/8aoxigot3nbmxyvjoytjrtp6e0glxew07q.png)
Multiply on the left:
![x=(1)/(4)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/jh37x07sjz76xaa2lh4y3k3hf49zg9h2k3.png)
So, for h(x) to be 3/4, the value of x is 1/4.
And we're done!