184k views
2 votes
Please someone help me to prove this...​

Please someone help me to prove this...​-example-1

1 Answer

7 votes

Answer: see proof below

Explanation:

Use the following Power Reducing Identities:


\cos^2 A = (1)/(2)(1 + \cos 2A)\\\\\sin^2 A = (1)/(2)(1 - \cos 2A)

Use the following Product to Sum Identity:


\cos A\cdot \cos B=(1)/(2)\bigg[\cos(A+B)+\cos(A-B)\bigg]

Proof LHS → RHS


\text{LHS:}\qquad \qquad \qquad \cos^2\beta\cdot \sin^4\beta\\.\qquad \qquad \qquad =\cos^2\beta\cdot \sin^2\beta\cdot \sin^2 \beta


\text{Power Reducing:}\qquad (1)/(2)\bigg(1+\cos 2\beta\bigg)(1)/(2)\bigg(1-\cos 2\beta\bigg)(1)/(2)\bigg(1-\cos 2\beta\bigg)\\\\\\.\qquad \qquad \qquad \quad =(1)/(8)(1+\cos 2\beta)(1-\cos 2\beta)(1-\cos 2\beta)


\text{Expand:}\qquad \qquad (1)/(8)\bigg(1-\cos 2\beta-\cos^2 2\beta+\cos^3 2\beta\bigg)\\\\.\qquad \qquad \qquad =(1)/(8)\bigg(1-\cos 2\beta-\cos^2 2\beta+\cos^2 2\beta \cdot \cos \2\beta\bigg)


\text{Power Reducing:}\qquad (1)/(8)\bigg(1-\cos 2\beta -(1)/(2)(1+\cos 4\beta)+(1)/(2)(1+\cos 4\beta)\cos 2\beta\bigg)\\\\.\qquad \qquad \qquad =(1)/(16)\bigg(2-2\cos 2\beta -1-\cos 4\beta +\cos 2\beta +\cos 4\beta \cdot \cos 2\beta \bigg)\\\\.\qquad \qquad \qquad =(1)/(16)\bigg(1-\cos 2\beta -\cos 4\beta+\cos 4\beta \cdot \cos 2\beta \bigg)


\text{Product to Sum:}\quad (1)/(16)\bigg(1-\cos 2\beta -\cos 4\beta +(1)/(2)[\cos(4\beta+2\beta)+\cos (4\beta-2\beta)]\bigg)\\\\.\qquad \qquad \qquad =(1)/(32)\bigg(2-2\cos 2\beta -2\cos 4\beta +\cos 6\beta +\cos 2\beta\bigg)\\\\.\qquad \qquad \qquad =(1)/(32)\bigg(\cos 6\beta-2\cos 4\beta -\cos 2\beta +2 \bigg)


\text{LHS=RHS:}\\ (1)/(32)\bigg(\cos 6\beta-2\cos 4\beta -\cos 2\beta +2 \bigg)=(1)/(32)\bigg(\cos 6\beta-2\cos 4\beta -\cos 2\beta +2 \bigg)

Please someone help me to prove this...​-example-1
Please someone help me to prove this...​-example-2
Please someone help me to prove this...​-example-3
User Luc Franken
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories