Answer:
The volume of the solid = 1444
Step-by-step explanation:
Given that:
The region of the solid is bounded by the curves
and the axis on
![[-(\pi)/(2), (\pi)/(2)]](https://img.qammunity.org/2021/formulas/mathematics/college/xk51pzqt0wzzv5xq0ahsp83p39w0sv3u5j.png)
using the slicing method
Let say the solid object extends from a to b and the cross-section of the solid perpendicular to the x-axis has an area expressed by function A.
Then, the volume of the solid is ;
![V = \int ^b_a \ A(x) \ dx](https://img.qammunity.org/2021/formulas/mathematics/college/cxvpnk9lqq586xdj287tr4fnu8v2tyiq97.png)
However, each perpendicular slice is an isosceles leg on the xy-plane and vertical leg above the x-axis
Then, the area of the perpendicular slice at a point
is:
![A(x) =(1)/(2) * b * h](https://img.qammunity.org/2021/formulas/mathematics/college/s49rwjgyfnt9u6lafwlw7ee387zbectlkd.png)
![A(x) =(1)/(2) *(38 √(cos \ x))^2](https://img.qammunity.org/2021/formulas/mathematics/college/lp9xxhfsuvtyomkp8etnfswapo8odr1bp4.png)
![A(x) =(1444)/(2) \ cos \ x](https://img.qammunity.org/2021/formulas/mathematics/college/1qr8ycwbtwsofdylz9kq97x6r8l327kkdj.png)
![A(x) =722 \ cos \ x](https://img.qammunity.org/2021/formulas/mathematics/college/duetjakqiral49cyvmpl3e4pfjqj8i3yzl.png)
Applying the general slicing method ;
![V = \int ^b_a \ A(x) \ dx \\ \\ V = \int ^{(\pi)/(2) }_{-(\pi)/(2)} (722 \ cos x) \ dx \\ \\ V = 722 \int ^{(\pi)/(2)}_{-(\pi)/(2)} cosx \dx](https://img.qammunity.org/2021/formulas/mathematics/college/slmt2tn7ifwugs6pd44bonz98hl5tsf8r1.png)
![V = 722 [ sin \ x ] ^{(\pi)/(2)}_{-(\pi)/(2)}](https://img.qammunity.org/2021/formulas/mathematics/college/k8k757hcipmwtpt0c496m8pdma61bye09z.png)
![V = 722 [sin (\pi)/(2) - sin (-(\pi)/(2))]](https://img.qammunity.org/2021/formulas/mathematics/college/ti86p73w4i4x0em6uwvjg17qdnvmieu1s4.png)
![V = 722 [sin (\pi)/(2) + sin (\pi)/(2))]](https://img.qammunity.org/2021/formulas/mathematics/college/8er7o9s2v5ht87vbhbvl2woz5gcf8crvsa.png)
![V = 722 [1+1]](https://img.qammunity.org/2021/formulas/mathematics/college/a1ebl1pluos84eeocoz13brav7hddfq71o.png)
![V = 722 [2]](https://img.qammunity.org/2021/formulas/mathematics/college/7h75v6a3lejrrrgar3c86figcomz2hsk2w.png)
V = 1444
∴ The volume of the solid = 1444