Answer:
In set-builder notation, the set of solutions is:
![\left \u](https://img.qammunity.org/2021/formulas/mathematics/college/q5dnrn91dsgfxem68ockdldw9tkvibzour.png)
Explanation:
Let's start by isolating the absolute value expression on one side of the inequality:
8 | u - 2 | - 7 < 33
add 7 on both sides:
8 | u - 2 | < 40
divide both sides by 8:
| u - 2 | < 5
Now, in order to remove the absolute value symbols, we need to consider two different cases:
1) what is inside the absolute value symbols is larger than or equal to zero, so in such case when we remove the absolute value we get exactly what was inside:
u - 2 < 5
u < 5 + 2
u < 7
Now the other case;
2) what is inside the absolute value is smaller than zero, then when removing the symbols we get:
2 - u < 5
2 - 5 < u
-3 < u
Then the set of solutions of this inequality are the set of u values such that u is larger than -3 (to the right of -3 on the number line, and smaller than 7 (to the left of the number 7 on the number line.
In graph form this should look like a highlighted segment on the number line that starts at -3 on the left, ends at 7 on the right, and doesn't include the endpoints -3 and 7.
in set builder notation, the set of solutions is given by:
![\left \u](https://img.qammunity.org/2021/formulas/mathematics/college/q5dnrn91dsgfxem68ockdldw9tkvibzour.png)