Answer:
![T=92.16 \°C](https://img.qammunity.org/2021/formulas/engineering/college/ah5a7g1j3i23cknlrfe245qgz8ixtzljlh.png)
![y_(et)=0.433\\\\y_w=0.567](https://img.qammunity.org/2021/formulas/engineering/college/2xysv8iautqpkmkuh5mp8e1csiginiww93.png)
Step-by-step explanation:
Hello,
In this case, the Raoult's law for this problem is:
![y_(et)P=x_(et)P_(et)^(sat)\\\\y_(w)P=x_(w)P_(w)^(sat)](https://img.qammunity.org/2021/formulas/engineering/college/hwt5clqq0y4mhbvwc0rg81bpnfziyskxue.png)
Which can be written as:
![P=x_(et)P_(et)^(sat)+x_(w)P_(w)^(sat)](https://img.qammunity.org/2021/formulas/engineering/college/tu345ef2wb25t2jl4imyi8vgoan5553prz.png)
Thus, by using the Antoine equation, we can symbolically represent the the temperature at which such mixture boil:
![1atm=0.2608*10^{(8.13484-( 1662.48)/(238.131+T))}/760+0.7392*10^{(5.40221-(1838.675)/(-31.737+T-273.15))}/1.01325](https://img.qammunity.org/2021/formulas/engineering/college/s3284z143jokf8qh2dfo1g7b612o4zbdg8.png)
The solution, by numerical iteration process (there is not way to solve it analytically) is 92.16 °C considering the data extracted from NIST database. Next, vapor fractions are:
![y_(et)=x_(et)*10^{(8.13484-( 1662.48)/(238.131+T))}/760/P\\\\y_(et)=0.2608*10^{(8.13484-( 1662.48)/(238.131+92.16))}/760/1atm\\\\y_(et)=0.433\\\\y_w=1-y_(et)=1-0.433\\\\y_w=0.567](https://img.qammunity.org/2021/formulas/engineering/college/2gp5ryjwu18e1jy3qjgm9psgi1t51xlrcc.png)
Regards.