222k views
4 votes
A ball is kicked with an initial height of 0.75 meters and initial upward velocity of 22 meters/second. This inequality represents the time, t, in seconds, when the ball’s height is greater than 10 meters.

2 Answers

4 votes

Answer:

0.47 and 4.02

Explanation:

Edmentum/Plato

A ball is kicked with an initial height of 0.75 meters and initial upward velocity-example-1
User JoJo
by
8.0k points
6 votes

Complete Question:

A ball is kicked with an initial height of 0.75 meters and initial upward velocity of 22 meters/second. This inequality represents the time, t in

seconds, when the ball's height is greater than 10 meters.

-4.9t² + 22t + 0.75 > 10

The ball's height is greater than 10 meters when t is approximately between __ and __ seconds

Answer:

The ball's height is greater than 10 meters when t is approximately between 0.47 and 4.02 seconds

Explanation:

Given


-4.9t\² + 22t + 0.75 > 10

Required

Solve the inequality


-4.9t\² + 22t + 0.75 > 10

Subtract 10 from both sides


-4.9t\² + 22t + 0.75 - 10> 10 - 10


-4.9t\² + 22t + -9.25> 0

Solve using quadratic formula


t = (-b \± √(b^2 - 4ac))/(2a)

In this case;

a = -4.9; b = 22; c = -9.25


t = (-22 \± √(22^2 - 4 * (-4.9) * (-9.25)))/(2 * -4.9)


t = (-22 \± √(484 - 181.3))/(-9.8)


t = (22 \± √(484 - 181.3))/(9.8)


t = (22 \± √(302.7))/(9.8)


t = (22 \± 17.398)/(9.8)

Split


t = (22 + 17.398)/(9.8) or
t = (22 - 17.398)/(9.8)


t = (39.398)/(9.8) or
t = (4.602)/(9.8)


t = 4.02 or
t = 0.47

Convert to inequality;


0.47 < t < 4.02

Hence;

The ball's height is greater than 10 meters when t is approximately between 0.47 and 4.02 seconds

User Wibosco
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories