Correct Question: If m∠JKM = 43, m∠MKL = (8x - 20), and m∠JKL = (10x - 11), find each measure.
1. x = ?
2. m∠MKL = ?
3. m∠JKL = ?
Answer/Step-by-step explanation:
Given:
m<JKM = 43,
m<MKL = (8x - 20),
m<JKL = (10x - 11).
Required:
1. Value of x
2. m<MKL
3. m<JKL
Solution:
1. Value of x:
m<JKL = m<MKL + m<JKM (angle addition postulate)
Therefore:
![(10x - 11) = (8x - 20) + 43](https://img.qammunity.org/2021/formulas/mathematics/high-school/cdns79fkg4lj7bqyexkiqo3gtrvazca949.png)
Solve for x
![10x - 11 = 8x - 20 + 43](https://img.qammunity.org/2021/formulas/mathematics/high-school/o72j0rm5rpgu6qdlfilxkez7of80w1pj9z.png)
![10x - 11 = 8x + 23](https://img.qammunity.org/2021/formulas/mathematics/high-school/slqpk0o7j8are3pkj4u170emwrcm4pifb3.png)
Subtract 8x from both sides
![10x - 11 - 8x = 8x + 23 - 8x](https://img.qammunity.org/2021/formulas/mathematics/high-school/1b6qyt6o5p8t8j2ej3s5w38frebrcf80nr.png)
![2x - 11 = 23](https://img.qammunity.org/2021/formulas/mathematics/high-school/uz8jbjd2o39tgjiqy44znp1ijj2d1taowo.png)
Add 11 to both sides
![2x - 11 + 11 = 23 + 11](https://img.qammunity.org/2021/formulas/mathematics/high-school/2dj1j3snmc3nvhdmto63oy5jga9tyv3o6f.png)
![2x = 34](https://img.qammunity.org/2021/formulas/mathematics/high-school/n0u1o9np1dz4ehzjzw6jhwws7xylr17vyf.png)
Divide both sides by 2
![(2x)/(2) = (34)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/cto292brip2ij1xlmw9k9144sd3xry3msa.png)
![x = 17](https://img.qammunity.org/2021/formulas/mathematics/middle-school/l3vlal9s6lnhhep92usojso653zuo02oj3.png)
2. m<MKL = 8x - 20
Plug in the value of x
m<MKL = 8(17) - 20 = 136 - 20 = 116°
3. m<JKL = 10x - 11
m<JKL = 10(17) - 11 = 170 - 11 = 159°