128k views
2 votes
Please someone help me....​

Please someone help me....​-example-1

2 Answers

5 votes

We are given the equation cos(20°)(cos(40°)(cos(60°)(cos(80°) = √3 / 8. Let's once again start by applying the identity 'sin(s)sin(t) = - cos(s + t) + cos(s - t) / 2. In this case if we focus on the expression 'cos(20°)(cos(40°),' s would be = 20°, and t = 40°.


\mathrm{Use\:the\:following\:identity}:\quad \sin \left(s\right)\sin \left(t\right)=(-\cos \left(s+t\right)+\cos \left(s-t\right))/(2)


\sin \left(20^(\circ \:)\right)\sin \left(40^(\circ \:)\right)=(-\cos \left(20^(\circ \:)+40^(\circ \:)\right)+\cos \left(20^(\circ \:)-40^(\circ \:)\right))/(2)


\mathrm{Substitute}:(-\cos \left(20^(\circ \:)+40^(\circ \:)\right)+\cos \left(20^(\circ \:)-40^(\circ \:)\right))/(2)\sin \left(80^(\circ \:)\right)


\mathrm{Multiply\:fractions}:(\sin \left(80^(\circ \:)\right)\left(-\cos \left(60^(\circ \:)\right)+\cos \left(-20^(\circ \:)\right)\right))/(2)

Remember that cos(- x) = cos(x). Respectively cos(- 20°) = cos(20°). Let's substitute and afterwards apply the identity 'cos(60°) = 1 / 2.'


(\sin \left(80^(\circ \:)\right)\left(-\cos \left(60^(\circ \:)\right)+\cos \left(20^(\circ \:)\right)\right))/(2) = (\sin \left(80^(\circ \:)\right)\left(-(1)/(2)+\cos \left(20^(\circ \:)\right)\right))/(2)

And if we further simplify the expression, we should receive the following...


(\sin \left(80^(\circ \:)\right)\left(-1+2\cos \left(20^(\circ \:)\right)\right))/(4)

Now we want to prove that this expression = √3 / 8. The denominator here is 4 so we can multiply the whole thing by 2 to have a denominator of 8. 2((sin(80°)(- 1 + 2cos(20°)) when simplified = √3. Therefore the expression is true.

User Ymnk
by
7.9k points
6 votes

Answer: see proof below

Explanation:

Use the following Product to Sum Identities:

2 sin A sin B = cos (A - B) - cos (A + B)

2 sin A cos B = sin (A + B) + sin (A - B)

Use the Unit Circle to evaluate: cos 120 = -1/2 & sin 60 = √3/2

Proof LHS → RHS

LHS: sin 20 · sin 40 · sin 80

Regroup: (1/2) sin 20 · 2 sin 40 · sin 80

Product to Sum Identity: (1/2) sin 20 [cos(80-40) - cos (80+40)]

Simplify: (1/2) sin 20 [cos 40 - cos 120]

Unit Circle: (1/2) sin 20 [cos 40 + (1/2)]

Distribute: (1/2) sin 20 cos 40 + (1/4) sin 20

Product to Sum Identity: (1/4)[sin(20 + 40) + sin (20 - 40)] + (1/4) sin 20

Simplify: (1/4)[sin 60 + sin (-20)] + (1/4) sin 20

= (1/4)[sin 60 - sin 20] + (1/4) sin 20

Unit Circle: (1/4)[(√3/2) - sin 20] + (1/4) sin 20

Distribute: (√3/8) - (1/4) sin 20 + (1/4) sin 20

Simplify: √3/8

LHS = RHS: √3/8 = √3/8
\checkmark

User Neha Soni
by
7.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories