Answer: see proof below
Explanation:
Use the following Product to Sum Identities:
2 sin A sin B = cos (A - B) - cos (A + B)
2 sin A cos B = sin (A + B) + sin (A - B)
Use the Unit Circle to evaluate: cos 120 = -1/2 & sin 60 = √3/2
Proof LHS → RHS
LHS: sin 20 · sin 40 · sin 80
Regroup: (1/2) sin 20 · 2 sin 40 · sin 80
Product to Sum Identity: (1/2) sin 20 [cos(80-40) - cos (80+40)]
Simplify: (1/2) sin 20 [cos 40 - cos 120]
Unit Circle: (1/2) sin 20 [cos 40 + (1/2)]
Distribute: (1/2) sin 20 cos 40 + (1/4) sin 20
Product to Sum Identity: (1/4)[sin(20 + 40) + sin (20 - 40)] + (1/4) sin 20
Simplify: (1/4)[sin 60 + sin (-20)] + (1/4) sin 20
= (1/4)[sin 60 - sin 20] + (1/4) sin 20
Unit Circle: (1/4)[(√3/2) - sin 20] + (1/4) sin 20
Distribute: (√3/8) - (1/4) sin 20 + (1/4) sin 20
Simplify: √3/8
LHS = RHS: √3/8 = √3/8