185k views
0 votes
Find the area of the triangle ABC A(-6,2) B(3,2) c(-2,6) D (-2,2)

Find the area of the triangle ABC A(-6,2) B(3,2) c(-2,6) D (-2,2)-example-1
Find the area of the triangle ABC A(-6,2) B(3,2) c(-2,6) D (-2,2)-example-1
Find the area of the triangle ABC A(-6,2) B(3,2) c(-2,6) D (-2,2)-example-2
User CKuck
by
8.4k points

2 Answers

2 votes

Answer:

18

Explanation:

User Tomek Kopczuk
by
8.5k points
3 votes

Answer:

18 square units.

Explanation:

Area of the triangle = ½*AB*CD

First of all, find the length of AB and CD using the distance formula,
d = √((x_2 - x_1)^2 + (y_2 - y_1)^2)


AB = √((x_2 - x_1)^2 + (y_2 - y_1)^2)

A(-6, 2) => (x1, y1)

B(3, 2) => (x2, y2)


AB = √((3 -(-6))^2 + (2 - 2)^2)


AB = √((9)^2 + (0)^2) = √(81) = 9


CD = √((x_2 - x_1)^2 + (y_2 - y_1)^2)

C(-2, 6) => (x1, y1)

D(-2, 2) => (x2, y2)


CD = √((-2 -(-2))^2 + (2 - 6)^2)


CD = √((0)^2 + (-4)^2) = √(16) = 4

AB = 9

CD = 4

Area of rectangle = ½*AB*CD = ½*9*4 = 9*2 = 18 square units.

User RDV
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories