Answer:
18 square units.
Explanation:
Area of the triangle = ½*AB*CD
First of all, find the length of AB and CD using the distance formula,
![d = √((x_2 - x_1)^2 + (y_2 - y_1)^2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/z9cahkzclgonb9umdtmpk57jqqr3gyakad.png)
![AB = √((x_2 - x_1)^2 + (y_2 - y_1)^2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/3ydi85lomr1z9n183d60rckxp8ic22rf4v.png)
A(-6, 2) => (x1, y1)
B(3, 2) => (x2, y2)
![AB = √((3 -(-6))^2 + (2 - 2)^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ciahh9150l4qnokonnom6eg9q0jndy0qii.png)
![AB = √((9)^2 + (0)^2) = √(81) = 9](https://img.qammunity.org/2021/formulas/mathematics/high-school/7t12z46ejzq0ugps0uwe0023xhw75mby47.png)
![CD = √((x_2 - x_1)^2 + (y_2 - y_1)^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/fofkfkvai88h38o80vrjygg7om80dc5p3s.png)
C(-2, 6) => (x1, y1)
D(-2, 2) => (x2, y2)
![CD = √((-2 -(-2))^2 + (2 - 6)^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/cy3dc6afvjjumeyvu3a2mp8aeqzmzbj03b.png)
![CD = √((0)^2 + (-4)^2) = √(16) = 4](https://img.qammunity.org/2021/formulas/mathematics/high-school/95agcizig7d66nrh4a2dzyj97azv300de3.png)
AB = 9
CD = 4
Area of rectangle = ½*AB*CD = ½*9*4 = 9*2 = 18 square units.