119k views
0 votes
Please someone help me to prove this. ​

Please someone help me to prove this. ​-example-1

1 Answer

2 votes

Answer: see proof below

Explanation:

Use the Double Angle Identity: sin 2Ф = 2sinФ · cosФ

Use the Sum/Difference Identities:

sin(α + β) = sinα · cosβ + cosα · sinβ

cos(α - β) = cosα · cosβ + sinα · sinβ

Use the Unit circle to evaluate: sin45 = cos45 = √2/2

Use the Double Angle Identities: sin2Ф = 2sinФ · cosФ

Use the Pythagorean Identity: cos²Ф + sin²Ф = 1

Proof LHS → RHS

LHS: 2sin(45 + 2A) · cos(45 - 2A)

Sum/Difference: 2 (sin45·cos2A + cos45·sin2A) (cos45·cos2A + sin45·sin2A)

Unit Circle: 2[(√2/2)cos2A + (√2/2)sin2A][(√2/2)cos2A +(√2/2)·sin2A)]

Expand: 2[(1/2)cos²2A + cos2A·sin2A + (1/2)sin²2A]

Distribute: cos²2A + 2cos2A·sin2A + sin²2A

Pythagorean Identity: 1 + 2cos2A·sin2A

Double Angle: 1 + sin4A

LHS = RHS: 1 + sin4A = 1 + sin4A
\checkmark

User John Towers
by
4.6k points