Answer:
a) 7/4 b) 5 c) 2
Explanation:
Logrithmic Rule for a and b
Let a, M, N be positive real numbers.
a)
logaM - logaN = loga(M/N)
log9(7) - log9(4) = log9 (7/4)
b)
logaM + logaN = logaMN
log2 (x) + log2(9) = log2(45)
x9=45
(x9)/9 = 45/9
x = 5
c)
Change of base formula.
logb(x)=logd(b)/logd(x)
x log6(5) = log6(25) divide each term by log6(5)
x log6(5) / log6(5) = log6(25) / log6(5) Cancel common factor log6(5)
x = log6(25) / log6(5)
x = log6(5^2) / log6(5)
Expand log6(5^2) by moving 2 outside the logarithm.
x = 2log6(5) / log6(5) cancel the like term log6(5)
x = 2