189k views
1 vote
Please someone help me..!!!!​

Please someone help me..!!!!​-example-1

1 Answer

5 votes

Answer: see proof below

Explanation:

Use the Triple Angle Identity: sin 3A = 3sinA - 4sin³A


\text{Given:}\quad \sin\bigg((\theta)/(3)\bigg)=(1)/(2)\bigg(m+(1)/(m)\bigg)

Proof LHS → RHS

LHS: sin Ф

Let A = Ф/3 sin 3A

Triple Angle Identity: 3sinA - 4sin³A

Substitute Ф/3 = A: 3sin(Ф/3) - 4sin³(Ф/3)

Substitute sin(Ф/3):
3\bigg((1)/(2)\bigg(m+(1)/(m)\bigg)\bigg)-4\bigg((1)/(2)\bigg(m+(1)/(m)\bigg)\bigg)^3


\text{Simplify:}\qquad \qquad (3m)/(2)+(3)/(2m)-4\bigg((1)/(8)\bigg(m^3+3m+(3)/(m)+(1)/(m^3)\bigg)\bigg)\\\\.\qquad \qquad \qquad =(3m)/(2)+(3)/(2m)-(m^3)/(2)-(3m)/(2)-(3)/(2m)-(1)/(2m^3)\\\\.\qquad \qquad \qquad =-(m^3)/(2)-(1)/(2m^3)\\\\\text{Factor:}\qquad \qquad -(1)/(2)\bigg(m^3+(1)/(m^3)\bigg)


\text{LHS = RHS:}\quad -(1)/(2)\bigg(m^3+(1)/(m^3)\bigg)=-(1)/(2)\bigg(m^3+(1)/(m^3)\bigg)\quad \checkmark\\

Please someone help me..!!!!​-example-1
Please someone help me..!!!!​-example-2
User Oxfist
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories