Answer:
![f(x) =3\,*\,\,4^x](https://img.qammunity.org/2021/formulas/mathematics/college/6kasy2cta121eoywbo2iu2ir8pe6k33s9h.png)
Explanation:
to find the equation of an exponential function, just points on the function's graph are needed.
Recall that the exponential function has a general expression given by:
![f(x) = a \,e^(b\,x)](https://img.qammunity.org/2021/formulas/mathematics/college/slduc2igrh732sbqiykjl10xz43qywa57q.png)
so we impose the condition for the function going through the first point (0,3) as:
![f(0) = a \,e^(b\,(0))= 3\\a\,e^0=3\\a\,(1)=3\\a = 3](https://img.qammunity.org/2021/formulas/mathematics/college/djygfqwq9vz0gfm36lo29dx827bly82blp.png)
Now,knowing the parameter a, we can find the parameter b using the other point:
![f(1) = 3 \,e^(b\,x)= 12\\3\,e^(b\,(1))=12\\e^b=12/3\\e^b=4\\b=ln(4)](https://img.qammunity.org/2021/formulas/mathematics/college/8l9astfxplvxum443sko8tz88ceq97v30b.png)
Therefore, the function can be written as:
![f(x) = 3 \,e^(ln(4)\,x)=3\,\,\,4^x](https://img.qammunity.org/2021/formulas/mathematics/college/4flvcksw6lyx5z6jo7oe587h8zzqa97u76.png)