Answer:
Below.
Explanation:
Left side = 2 cos^2 ( π/4 - A/2) - 1
= 2 ( cos π/4 cos A/2 + sin π/4 sin A/2)^2 - 1
Now sin π/4 and cos π/4 = 1 /√2 so:
= 2 ( 1/√2 cos A/2 + 1/√2 sin A/2)^2 - 1
= 2 * 1/2( cos^2 A/2 + sin^2 A/2 + 2 sin A/2 cos A/2) - 1
But cos^2 a/2 + sin^2 A/2 = 1 so we have:
2 * 1/2( 1 + 2sin A/2 cos A/2) - 1
= 1 + 2 sin A/2 cos A/2 - 1
= 2 sin A/2 cos A/2
Using the identity 2 sin A cos A = sin 2A
2 sin A/2 cos A/2 = sin A = right side.
So left side = right side and the identity is proved.