192k views
1 vote

\int \sec(x) dx
Evaluate the integral above​

User Oleksiyp
by
4.8k points

2 Answers

2 votes

Answer:


= \ln( | \sec(x) + \tan(x) | ) + C

Explanation:


\int \sec(x) dx

multiply and divide by sec x + tan x


= \int ( \sec(x) ( \sec(x) + \tan(x) ) )/( \sec(x) + \tan(x) ) dx

let u = sec x + tan x

du = (sec x)(sec x + tan x) dx


= \int (1)/(u) du


= \ln( |u| ) + C


= \boxed{\color{green} \ln( }

User Nicoschl
by
4.9k points
2 votes


&#128075 Hello ! ☺️

Explanation:

∫sec(x)dx =


(sec(x).(secx + tanx))/(secx + tanx)dx


\frac{sec {}^(2) (x) + secxtanx}{secx + tanx}dx

u = secx + tanx


du = secx tanx + sec {}^(2)x \: dx


∫(1)/(u)du

∫sec(x)dx= ln |u|


\boxed{\color{gold} + C}


<marquee direction=

\int \sec(x) dx Evaluate the integral above​-example-1
User Pablo CG
by
5.4k points