192k views
1 vote

\int \sec(x) dx
Evaluate the integral above​

User Oleksiyp
by
8.5k points

2 Answers

2 votes

Answer:


= \ln( | \sec(x) + \tan(x) | ) + C

Explanation:


\int \sec(x) dx

multiply and divide by sec x + tan x


= \int ( \sec(x) ( \sec(x) + \tan(x) ) )/( \sec(x) + \tan(x) ) dx

let u = sec x + tan x

du = (sec x)(sec x + tan x) dx


= \int (1)/(u) du


= \ln( |u| ) + C


= \boxed{\color{green} \ln( }

User Nicoschl
by
7.9k points
2 votes


&#128075 Hello ! ☺️

Explanation:

∫sec(x)dx =


(sec(x).(secx + tanx))/(secx + tanx)dx


\frac{sec {}^(2) (x) + secxtanx}{secx + tanx}dx

u = secx + tanx


du = secx tanx + sec {}^(2)x \: dx


∫(1)/(u)du

∫sec(x)dx= ln |u|


\boxed{\color{gold} + C}


<marquee direction=

\int \sec(x) dx Evaluate the integral above​-example-1
User Pablo CG
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories