233k views
3 votes
Prove sin^6x+cos^6x+3 sin^2x cos^2x=1

2 Answers

4 votes

Answer:

its a formulae

we know (sinx+cosx)^3= sin^3x +cos^3x+3sinxcosx(sinx+cosx)

(a+b)^3= a^3 +b^3+3ab(a+b)

Explanation:

(sin^2x)^3 +cos^2x)^3+3sin^2x cos^2x(sin^2x+cos^2x)

according to formulae

(sin^2x+cos^2x)^3 {as we know sin^2x+cos^2x =1}

so the (1)^3= 1

{proved}

thank u

User Anders Carstensen
by
7.9k points
4 votes

Answer: see proof below

Explanation:

Use the formula for factoring a cubic: (a³ + b³) = (a + b)(a² - ab + b²)

and the formula for a perfect square: a² + 2ab + b² = (a + b)²

and the Pythagorean Identity: cos²x + sin²x = 1

Proof LHS → RHS

Given: sin⁶x + cos⁶x + 3sin²x cos²x

Regroup: (sin²x)³ + (cos²x)³ + 3sin²x cos²x

Factor Cubic: (sin²x + cos²x)(sin⁴x - sin²x cos²x + cos⁴x) + 3sin²x cos²x

Pythagorean Identity: 1(sin⁴x - sin²x cos²x + cos⁴x) + 3sin²x cos²x

Add like terms: sin⁴x + 2sin²x cos²x + cos⁴x

Regroup: (sin²x)² + 2sin²x cos²x + (cos²x)²

Factor Perfect Square: (sin²x + cos²x)²

Pythagorean Identity: (1)²

Simplify: 1

LHS = RHS: 1 = 1
\checkmark\\

User Mrun
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories