Answer: see proof below
Explanation:
Use the formula for factoring a cubic: (a³ + b³) = (a + b)(a² - ab + b²)
and the formula for a perfect square: a² + 2ab + b² = (a + b)²
and the Pythagorean Identity: cos²x + sin²x = 1
Proof LHS → RHS
Given: sin⁶x + cos⁶x + 3sin²x cos²x
Regroup: (sin²x)³ + (cos²x)³ + 3sin²x cos²x
Factor Cubic: (sin²x + cos²x)(sin⁴x - sin²x cos²x + cos⁴x) + 3sin²x cos²x
Pythagorean Identity: 1(sin⁴x - sin²x cos²x + cos⁴x) + 3sin²x cos²x
Add like terms: sin⁴x + 2sin²x cos²x + cos⁴x
Regroup: (sin²x)² + 2sin²x cos²x + (cos²x)²
Factor Perfect Square: (sin²x + cos²x)²
Pythagorean Identity: (1)²
Simplify: 1
LHS = RHS: 1 = 1
![\checkmark\\](https://img.qammunity.org/2021/formulas/mathematics/high-school/wnl71o11aw8in8oag0ojlqccsq5o5lt0er.png)