Explanation:
First factor out the negative sign from the expression and reorder the terms
That's
![(1)/( - (( \tan(2A) - \tan(6A) )) - (1)/( \cot(6A) - \cot(2A) )](https://img.qammunity.org/2021/formulas/mathematics/high-school/koc1jkhdykiebbt3f5ykgrw8t190aj58uu.png)
Using trigonometric identities
That's
![\cot(x) = (1)/( \tan(x) )](https://img.qammunity.org/2021/formulas/mathematics/high-school/84u6yg3pqp8kf448ls17k35zofjjlum3x7.png)
Rewrite the expression
That's
![(1)/( - (( \tan(2A) - \tan(6A) )) - (1)/( (1)/( \tan(6A) ) ) - (1)/( (1)/( \tan(2A) ) )](https://img.qammunity.org/2021/formulas/mathematics/high-school/thuqrdriaypok7s3ic6qyzx9ka0ylrlgc8.png)
We have
![- (1)/( \tan(2A) - \tan(6A) ) - (1)/( ( \tan(2A) - \tan(6A) )/( \tan(6A) \tan(2A) ) )](https://img.qammunity.org/2021/formulas/mathematics/high-school/fxg5k2f0ezhqqi9z0ojjnhfd16wbvekn6r.png)
Rewrite the second fraction
That's
![- (1)/( \tan(2A) - \tan(6A) ) - ( \tan(6A) \tan(2A) )/( \tan(2A) - \tan(6A) )](https://img.qammunity.org/2021/formulas/mathematics/high-school/o129cdzo2e1frhpe9miuykdnczsq2rq14e.png)
Since they have the same denominator we can write the fraction as
![- (1 + \tan(6A) \tan(2A) )/( \tan(2A) - \tan(6A) )](https://img.qammunity.org/2021/formulas/mathematics/high-school/2ukdmx4mnf2wieel3lvpn50uxfl61fb5gc.png)
Using the identity
![(x)/(y) = (1)/( (y)/(x) )](https://img.qammunity.org/2021/formulas/mathematics/high-school/gf7g2o6fbvx7j6wyptssly8se34s5c119w.png)
Rewrite the expression
We have
![- (1)/( ( \tan(2A) - \tan(6A) )/(1 + \tan(6A) \tan(2A) ) )](https://img.qammunity.org/2021/formulas/mathematics/high-school/7hsuhj7qeb6girs3gdu94byd9udmgwvazp.png)
Using the trigonometric identity
![( \tan(x) - \tan(y) )/(1 + \tan(x) \tan(y) ) = \tan(x - y)](https://img.qammunity.org/2021/formulas/mathematics/high-school/x828keibwzcodq154ggs4lxgyxgs07igmq.png)
Rewrite the expression
That's
![- (1)/( \tan(2A -6A) )](https://img.qammunity.org/2021/formulas/mathematics/high-school/p2oi6shou7eaks1bn0zxwgwmo83bfeicr2.png)
Which is
![- (1)/( \tan( - 4A) )](https://img.qammunity.org/2021/formulas/mathematics/high-school/4ab0pucerbvnuef4561m9foisn6wvtzdsl.png)
Using the trigonometric identity
![(1)/( \tan(x) ) = \cot(x)](https://img.qammunity.org/2021/formulas/mathematics/high-school/9de56c3ifie83uaocu7i1sr8rpmtmjwxhq.png)
Rewrite the expression
That's
![- \cot( - 4A)](https://img.qammunity.org/2021/formulas/mathematics/high-school/hmjpvren339dnn91wd8w67166wa91hky3u.png)
Simplify the expression using symmetry of trigonometric functions
That's
![- ( - \cot(4A) )](https://img.qammunity.org/2021/formulas/mathematics/high-school/r1i2pvu04snr61pwngxue3gi6i11ep6lzh.png)
Remove the parenthesis
We have the final answer as
![\cot(4A)](https://img.qammunity.org/2021/formulas/mathematics/high-school/2hxk0w0i5dtp2gtvxp6s7zsl5z2mz5b5kf.png)
As proven
Hope this helps you