88.0k views
0 votes
Please someone help me...​

Please someone help me...​-example-1
User Danyella
by
5.1k points

2 Answers

5 votes

Answer: see proof below

Explanation:

Use the following identities:


\cot\alpha=(1)/(\tan\alpha)\\\\\\\cot(\alpha-\beta)=(1+\tan\alpha\cdot \tan\beta)/(\tan\alpha-\tan\beta)

Proof LHS → RHS

Given:
(1)/(\tan 6A-\tan 2A)-(1)/(\cot 6A-\cot 2A)

Cot Identity:
(1)/(\tan 6A-\tan 2A)-(1)/((1)/(\tan 6A)-(1)/(\tan 2A))

Simplify:
(1)/(\tan 6A-\tan 2A)-\frac{1}{(1)/(\tan 6A)\bigg((\tan 2A)/(\tan 2A)\bigg)-(1)/(\tan 2A)\bigg({(\tan 6A)/(\tan 6A)\bigg)}}


= (1)/(\tan 6A-\tan 2A)-(1)/((\tan 2A-\tan 6A)/(\tan 6A\cdot \tan 2A))


= (1)/(\tan 6A-\tan 2A)-(\tan6A\cdot \tan 2A)/(\tan 2A-\tan 6A)


= (1)/(\tan 6A-\tan 2A)-(\tan6A\cdot \tan 2A)/(\tan 2A-\tan 6A)\bigg((-1)/(-1)\bigg)


= (1)/(\tan 6A-\tan 2A)+(\tan6A\cdot \tan 2A)/(\tan 6A-\tan 2A)


= (1+\tan6A\cdot \tan 2A)/(\tan 6A-\tan 2A)

Sum Difference Identity: cot(6A - 2A)

Simplify: cot 4A

cot 4A = cot 4A
\checkmark

Please someone help me...​-example-1
Please someone help me...​-example-2
User Chimu
by
5.9k points
6 votes

Explanation:

First factor out the negative sign from the expression and reorder the terms

That's


(1)/( - (( \tan(2A) - \tan(6A) )) - (1)/( \cot(6A) - \cot(2A) )

Using trigonometric identities

That's


\cot(x) = (1)/( \tan(x) )

Rewrite the expression

That's


(1)/( - (( \tan(2A) - \tan(6A) )) - (1)/( (1)/( \tan(6A) ) ) - (1)/( (1)/( \tan(2A) ) )

We have


- (1)/( \tan(2A) - \tan(6A) ) - (1)/( ( \tan(2A) - \tan(6A) )/( \tan(6A) \tan(2A) ) )

Rewrite the second fraction

That's


- (1)/( \tan(2A) - \tan(6A) ) - ( \tan(6A) \tan(2A) )/( \tan(2A) - \tan(6A) )

Since they have the same denominator we can write the fraction as


- (1 + \tan(6A) \tan(2A) )/( \tan(2A) - \tan(6A) )

Using the identity


(x)/(y) = (1)/( (y)/(x) )

Rewrite the expression

We have


- (1)/( ( \tan(2A) - \tan(6A) )/(1 + \tan(6A) \tan(2A) ) )

Using the trigonometric identity


( \tan(x) - \tan(y) )/(1 + \tan(x) \tan(y) ) = \tan(x - y)

Rewrite the expression

That's


- (1)/( \tan(2A -6A) )

Which is


- (1)/( \tan( - 4A) )

Using the trigonometric identity


(1)/( \tan(x) ) = \cot(x)

Rewrite the expression

That's


- \cot( - 4A)

Simplify the expression using symmetry of trigonometric functions

That's


- ( - \cot(4A) )

Remove the parenthesis

We have the final answer as


\cot(4A)

As proven

Hope this helps you

User Curtis Crewe
by
5.3k points