137k views
2 votes
Prove the identity

4 \sin(x) \cos(x) = ( \sin(4x) )/( \cos(2x) )


2 Answers

6 votes

Answer:

Below

Explanation:

● 4 sin(x) cos(x) = sin(4x)/cos(2x)

Let's prove that:

● 4 sin(x) cos(x) cos(2x) = sin(4x)

It's easier to prove it than the first one

■■■■■■■■■■■■■■■■■■■■■■■■■■

● 4 sin(x) cos(x) cos (2x)

● [2 sin(x) cos(x)] 2 cos(2x)

We khow that [2 sin(x) cos(x)]= sin(2x)

So:

● sin(2x) 2 cos(2x)

Based on the same relation

● sin(4x)

It's proved

User Gustavo Morales
by
8.9k points
4 votes

=> R.H.S


( \sin(4x) )/( \cos(2x) ) = ( \sin(2x + 2x) )/( \cos(2x) )


= ( 2 \sin(2x) \cos(2x) )/( \cos(2x) )


= 2 \sin(2x)


= 2(2 \sin(x) \cos(x) )


= 4 \sin(x) \cos(x)

R.H.S = L.H.S

PROVED!

Prove the identity 4 \sin(x) \cos(x) = ( \sin(4x) )/( \cos(2x) ) ​-example-1
User Hypenate
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories