137k views
2 votes
Prove the identity

4 \sin(x) \cos(x) = ( \sin(4x) )/( \cos(2x) )


2 Answers

6 votes

Answer:

Below

Explanation:

● 4 sin(x) cos(x) = sin(4x)/cos(2x)

Let's prove that:

● 4 sin(x) cos(x) cos(2x) = sin(4x)

It's easier to prove it than the first one

■■■■■■■■■■■■■■■■■■■■■■■■■■

● 4 sin(x) cos(x) cos (2x)

● [2 sin(x) cos(x)] 2 cos(2x)

We khow that [2 sin(x) cos(x)]= sin(2x)

So:

● sin(2x) 2 cos(2x)

Based on the same relation

● sin(4x)

It's proved

User Gustavo Morales
by
5.3k points
4 votes

=> R.H.S


( \sin(4x) )/( \cos(2x) ) = ( \sin(2x + 2x) )/( \cos(2x) )


= ( 2 \sin(2x) \cos(2x) )/( \cos(2x) )


= 2 \sin(2x)


= 2(2 \sin(x) \cos(x) )


= 4 \sin(x) \cos(x)

R.H.S = L.H.S

PROVED!

Prove the identity 4 \sin(x) \cos(x) = ( \sin(4x) )/( \cos(2x) ) ​-example-1
User Hypenate
by
5.2k points