Answer
a)0.0495 J
b)0.01681 m
c)0.7218 m/s
Step-by-step explanation:
Given
Mass of the.toy M = 0.190 kg
force constant k = 350 N/m
Displacement from equilibrium x = 0.0140 m
Speed v = 0.400 m/s
a)What is the toy's total energy at any point of its motion?
The total energy at any point of it's motion can be calculated by adding together both the potential and kinetic energy of the toy, since it's posses potential energy when at rest and kinetic energy at motion
Total energy E = kinetic energy + potential energy
E = ¹/₂mv² + ¹/₂kx²
E = ¹/₂ (0.190)(0.4)² + ¹/₂ (350)(0.0140)²
E = 0.0495 J
Hence,the total energy is 0.0495 J
b) the amplitude of the motion can be calculated using below formula
Let amplitude = A
E = ¹/₂KA²
if we make Amplitude A the subject of the formula we have
A=√(2E/k)
But we have calculated our E up there, our K was given in question then if we substitute we have
A= √(2×0.0495)/350
Ans: 0.01681 m
Hence, our Amplitude is 0.01681 m
c) the the toy's maximum speed during its motion can be calculated using the expression below
Let maximum speed = vmax
E = (1/2)M * vmax^2
If we make vmax the subject of the formula we have
vmax =√(2E/m)
vmax= √(2×0.0495)/0.190
vmax=0.7218 m/s
Hence our vmax is 0.7218 m/s