45.0k views
4 votes
Please help me as soon as possible ...​

Please help me as soon as possible ...​-example-1
User Aoven
by
9.0k points

2 Answers

7 votes

Your question has been heard loud and clear.

tanθ+tan(60∘+θ)+tan(120∘+θ)

=tanθ+3–√+tanθ1−3–√tanθ+−3–√+tanθ1+3–√tanθ

[tanθ(1−3tan2θ)+(3–√+tanθ)(1+3–√tanθ)

=+(−3–√+tanθ)(1−3–√tanθ)1−3tan2θ

=9tanθ−3tan3θ1−3tan2θ=3tan3θ

Thank you.

User Justengel
by
7.8k points
0 votes

Answer: see proof below

Explanation:

Use the following identities

tan (A + B) = (tan A + tan B)/(1 - tan A · tan B) -->
(tanA+tanB)/(1-tanA\cdot tanB)

tan 60° = √3

tan 120° = -√3

tan 3A = (3tanA - tan³A)/(1 - 3 tan²A) -->
(3tanA-tan^3A)/(1-3tan^2A)

Proof LHS → RHS

Given: tan Ф + tan(60° + Ф) + tan(120° + Ф)

Sum Difference: tan Ф + (tan 60° + tanФ)/(1-tan60°·tanФ) + (tan 120° + tanФ)/(1-tan120°·tanФ)

(latex)
tan\theta+(tan60^o+tan\theta)/(1-tan60^o\cdot tan\theta)+(tan120^o+tan\theta)/(1-tan120^o\cdot tan\theta)

Substitute: tan Ф + (√3 + tanФ)/(1-√3·tanФ) + (-√3 + tanФ)/(1+√3°·tanФ)

(latex)
tan\theta+(\sqrt3+tan\theta)/(1-\sqrt3 tan\theta)+(-\sqrt3+tan\theta)/(1+\sqrt3tan\theta)

Common Denominator: [tan Ф(1-3tan²Ф)+8tanФ]\(1-3tan²Ф)

(latex)
(tan\theta(1-3tan^2\theta)+8\theta)/(1-3tan^2\theta)

Distribute: (tan Ф - 3tan³Ф + 8Ф)\(1 - 3 tan²Ф)

(latex)
(tan\theta-3tan^3\theta+8\theta)/(1-3tan^2\theta)

Simplify: (9Ф - 3tan³Ф)\(1 - 3 tan²Ф)

3(3Ф - tan³Ф)\(1 - 3 tan²Ф)

(latex)
(9\theta - 3tan^3\theta)/(1-3tan^2\theta)


(3(3\theta - tan^3\theta))/(1-3tan^2\theta)

Triple Angle Identity: 3 tan 3Ф

3 tan 3Ф = 3 tan 3Ф
\checkmark

User Leandroico
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories