45.0k views
4 votes
Please help me as soon as possible ...​

Please help me as soon as possible ...​-example-1
User Aoven
by
9.0k points

2 Answers

7 votes

Your question has been heard loud and clear.

tanθ+tan(60∘+θ)+tan(120∘+θ)

=tanθ+3–√+tanθ1−3–√tanθ+−3–√+tanθ1+3–√tanθ

[tanθ(1−3tan2θ)+(3–√+tanθ)(1+3–√tanθ)

=+(−3–√+tanθ)(1−3–√tanθ)1−3tan2θ

=9tanθ−3tan3θ1−3tan2θ=3tan3θ

Thank you.

User Justengel
by
7.8k points
0 votes

Answer: see proof below

Explanation:

Use the following identities

tan (A + B) = (tan A + tan B)/(1 - tan A · tan B) -->
(tanA+tanB)/(1-tanA\cdot tanB)

tan 60° = √3

tan 120° = -√3

tan 3A = (3tanA - tan³A)/(1 - 3 tan²A) -->
(3tanA-tan^3A)/(1-3tan^2A)

Proof LHS → RHS

Given: tan Ф + tan(60° + Ф) + tan(120° + Ф)

Sum Difference: tan Ф + (tan 60° + tanФ)/(1-tan60°·tanФ) + (tan 120° + tanФ)/(1-tan120°·tanФ)

(latex)
tan\theta+(tan60^o+tan\theta)/(1-tan60^o\cdot tan\theta)+(tan120^o+tan\theta)/(1-tan120^o\cdot tan\theta)

Substitute: tan Ф + (√3 + tanФ)/(1-√3·tanФ) + (-√3 + tanФ)/(1+√3°·tanФ)

(latex)
tan\theta+(\sqrt3+tan\theta)/(1-\sqrt3 tan\theta)+(-\sqrt3+tan\theta)/(1+\sqrt3tan\theta)

Common Denominator: [tan Ф(1-3tan²Ф)+8tanФ]\(1-3tan²Ф)

(latex)
(tan\theta(1-3tan^2\theta)+8\theta)/(1-3tan^2\theta)

Distribute: (tan Ф - 3tan³Ф + 8Ф)\(1 - 3 tan²Ф)

(latex)
(tan\theta-3tan^3\theta+8\theta)/(1-3tan^2\theta)

Simplify: (9Ф - 3tan³Ф)\(1 - 3 tan²Ф)

3(3Ф - tan³Ф)\(1 - 3 tan²Ф)

(latex)
(9\theta - 3tan^3\theta)/(1-3tan^2\theta)


(3(3\theta - tan^3\theta))/(1-3tan^2\theta)

Triple Angle Identity: 3 tan 3Ф

3 tan 3Ф = 3 tan 3Ф
\checkmark

User Leandroico
by
8.3k points

No related questions found